Re-expression of microRNA-375 reverses both tamoxifen resistance and accompanying EMT-like properties in breast cancer

Oncogene. 2013 Feb 28;32(9):1173-82. doi: 10.1038/onc.2012.128. Epub 2012 Apr 16.


Epithelial-mesenchymal transition (EMT) is an initiating event in tumor cell invasion and metastasis. It has been shown to occur in resistance to a range of cancer therapies, including tamoxifen. MicroRNAs (miRNAs) have been associated with EMT as well as resistance to standard therapies. To investigate the role of miRNAs in the development of resistance to tamoxifen as well as accompanying EMT-like properties, we established a tamoxifen-resistant (TamR) model by continually exposing MCF-7 breast cancer cells to tamoxifen. In addition to the molecular changes known to be involved in acquired tamoxifen resistance, TamR cells displayed mesenchymal features and had increased invasiveness. Genome-wide miRNA microarray analysis revealed that miRNA-375 was among the top downregulated miRNAs in resistant cells. Re-expression of miR-375 was sufficient to sensitize TamR cells to tamoxifen and partly reversed EMT. A combination of mRNA profiling, bioinformatics analysis and experimental validation identified metadherin (MTDH) as a direct target of miR-375. Knockdown of MTDH partially phenocopied the effects of miR-375 on the sensitivity to tamoxifen and the reversal of EMT. We observed an inverse correlation between the expression of miR-375 and its target MTDH in primary breast cancer samples, implying the pathological relevance of targeting. Finally, tamoxifen-treated patients with higher expression of MTDH had a shorter disease-free survival and higher risk of relapse. As most cancer-related deaths occur because of resistance to standard therapies and metastasis, re-expression of miR-375 or targeting MTDH might serve as potential therapeutic approaches for the treatment of TamR breast cancer.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Breast Neoplasms / genetics*
  • Breast Neoplasms / pathology*
  • Cell Adhesion Molecules / metabolism*
  • Cell Line, Tumor
  • Disease-Free Survival
  • Drug Resistance, Neoplasm / genetics*
  • Epithelial-Mesenchymal Transition*
  • Gene Expression Regulation, Neoplastic
  • Humans
  • Membrane Proteins
  • MicroRNAs / physiology*
  • Neoplasm Invasiveness / genetics
  • Quinazolines
  • RNA-Binding Proteins
  • Tamoxifen / pharmacology*


  • Cell Adhesion Molecules
  • MIRN375 microRNA, human
  • MTDH protein, human
  • Membrane Proteins
  • MicroRNAs
  • Quinazolines
  • RNA-Binding Proteins
  • Tamoxifen
  • doqualast