Purpose: Retinoblastoma (RB) is the most common intraocular malignancy in children. Deregulation of several miRNAs has been identified in RB, suggesting a potential role in tumorigenesis. Recent evidence suggests that many dietary components like folate, retinoids and curcumin act as potential anticancer/antiproliferative agents by regulating the expression of miRNA. In this study, we investigated the effect of phenolic compound curcumin on miRNA expression in Y79 RB cells.
Materials and methods: We analyzed the expression profile of miRNA by microarray analysis and quantitative real-time polymerase chain reaction (qRT-PCR) in curcumin-treated Y79 RB cells. Transfection of miR-22 was performed using Lipofectamine 2000. Cell viability, in vitro scratch migration assay, prediction of miRNA targets and Western blot analysis were performed to determine the biological function of miR-22 in Y79 RB cells.
Results: In Y79 RB cells treated with curcumin, 5 human miRNAs were upregulated and 16 were downregulated as detected with the miRNA microarray analysis. miR-22, a tumor-suppressor miRNA was one of the miRNA which was upregulated by curcumin. Transfected miR-22 Y79 cells inhibited the cell proliferation and reduced the migration, and erythoblastic leukemia viral oncogene homolog 3 (Erbb3) was confirmed to be the target gene of miR-22.
Conclusion: These observations suggest that curcumin modulate the miRNA expression profile, thereby exerting its anticancer effects on RB cells.