Novel amphiphilic polybetaines were synthesized and used as the base material for nonfouling coatings. The amphiphilicity of these polybetaines was systematically tuned by coupling chains of increasing hydrophobicity to the zwitterionic functionality side at the repeat unit level. An oligoethylene glycol (OEG) moiety was selected to yield the most hydrophilic coating, while octyl (C(8)) and fluorinated (F) groups were used to impart lipophilicity and lipophobicity to the coatings, respectively. This unique design allowed us to investigate the effect of the lipophilicity/lipophobicity of the side chain on the nonfouling properties of these zwitterionic systems. Adsorption studies, performed using six different proteins, showed that the fluorinated polybetaine, Poly[NFZI-co-NSi], resisted nonspecific adsorption as effectively as, and in some cases even better than, the most hydrophilic Poly[NOEGZI-co-NSi] coating. The comparison of Poly[NFZI-co-NSi] to its noncharged analog demonstrated the essential nature of the zwitterionic functionality in imparting nonfouling character to the coating.