Consumption of specific dietary fatty acids has been shown to influence risk and progression of several chronic diseases, such as cardiovascular disease, obesity, cancer, and arthritis. In recent years, insights into the mechanisms underlying the biological effects of fatty acids have improved considerably and have provided the foundation for the emerging concept of fatty acid sensing, which can be interpreted as the property of fatty acids to influence biological processes by serving as signaling molecules. An important mechanism of fatty acid sensing is via stimulation or inhibition of DNA transcription. Here, we focus on fatty acid sensing via regulation of gene transcription and address the role of peroxisome proliferator-activated receptors, sterol regulatory element binding protein 1, Toll-like receptor 4, G protein-coupled receptors, and other putative mediators.