Introduction: While waterpipe tobacco smoking has become a global phenomenon, its potential health consequences are poorly understood. In this manuscript, we report the in vitro mutagenicity of waterpipe smoke condensate (WSC), the alteration in cellular parameters of lung alveolar cells in response to WSC exposure and discuss the implication of cellular responses in the pathophysiology of chronic obstructive pulmonary disease (COPD).
Methods: The mainstream WSC was generated using a standard laboratory machine protocol. We assessed its mutagenicity using Ames test. In addition, we studied the effect of WSC on the proliferation and cell cycle of alveolar type II cells and vascular endothelial cells. We also assessed the effect of WSC on the expression of genes involved in cell cycle arrest and inflammation.
Results: Within the range of tested doses, WSC did not elicit sufficient response to be considered mutagenic in any of the strains tested (TA98, TA100, TA102, and TA97a) but were found to be toxic for strains TA97a and TA102 at the highest tested doses. However, WSC induced cell cycle arrest and cellular senescence mediated by the p53-p21 pathway. Also our study indicated that WSC induced an increase in the transcriptional expression of matrix metalloproteinases, MMP-2 and MMP-9 and an immune response regulator, Toll Like Receptor-4.
Conclusion: The data reported here represent the first in vitro demonstration of the effect of waterpipe smoke on cellular parameters providing evidence of the potential involvement of WPS in the pathogenesis of COPD through impairing cellular growth and inducing inflammation.
Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.