Structures of small bismuth cluster cations

J Chem Phys. 2012 Apr 21;136(15):154309. doi: 10.1063/1.3703014.

Abstract

The structures of bismuth cluster cations in the range between 4 and 14 atoms have been assigned by a combination of gas phase ion mobility and trapped ion electron diffraction measurements together with density functional theory calculations. We find that above 8 atoms the clusters adopt prolate structures with coordination numbers between 3 and 4 and highly directional bonds. These open structures are more like those seen for clusters of semiconducting-in-bulk elements (such as silicon) rather than resembling the compact structures typical for clusters of metallic-in-bulk elements. An accurate description of bismuth clusters at the level of density functional theory, in particular of fragmentation pathways and dissociation energetics, requires taking spin-orbit coupling into account. For n = 11 we infer that low energy isomers can have fragmentation thresholds comparable to their structural interconversion barriers. This gives rise to experimental isomer distributions which are dependent on formation and annealing histories.