Cluster-based networks: 1D and 2D coordination polymers based on {MnFe2(μ3-O)}-type clusters

Inorg Chem. 2012 May 7;51(9):5110-7. doi: 10.1021/ic202644t. Epub 2012 Apr 23.


A straightforward approach to heterometallic Mn-Fe cluster-based coordination polymers is presented. By employing a mixed-valent μ(3)-oxo trinuclear manganese(II/III) pivalate cluster, isolated as [Mn(II)Mn(III)(2)O(O(2)CCMe(3))(6)(hmta)(3)]·(solvent) (hmta = hexamethylenetetramine; solvent = n-propanol (1), toluene (2)) in the reaction with a μ(3)-oxo trinuclear iron(III) pivalate cluster compound, [Fe(3)O(O(2)CCMe(3))(6)(H(2)O)(3)]O(2)CCMe(3)·2Me(3)CCO(2)H, three new heterometallic {Mn(II)Fe(III)(2)} cluster-based coordination polymers were obtained: the one-dimensional polymer chain compounds {[MnFe(2)O(O(2)CCMe(3))(6)(hmta)(2)]·0.5MeCN}(n) (3) and {[MnFe(2)O(O(2)CCMe(3))(6)(hmta)(2)]·Me(3)CCO(2)H·(n-hexane)}(n) (4) and the two-dimensional layer compound {[MnFe(2)O(O(2)CCMe(3))(6)(hmta)(1.5)]·(toluene)}(n) (5). Single-crystal X-ray diffraction analysis reveals a μ(3)-oxo trinuclear pivalate cluster building block as the main constituent in all polymer compounds. Different M:hmta ratios in 1-5 are related to the different structural functions of the N-containing ligand. In clusters 1 and 2, three hmta ligands are monodentate, whereas in chains 3 and 4 two hmta ligands act as bridging ligands and one is a monodentate ligand; in 5, all hmta molecules act as bidentate bridges. Magnetic studies indicate dominant antiferromagnetic interactions between the metal centers in both homometallic {Mn(3)}-type clusters 1 and 2 and heterometallic {MnFe(2)}-type coordination polymers 3-5. Modeling of the magnetic susceptibility data to a isotropic model Hamiltonian yields least-squares fits for the following parameters: J(1)(Mn(II)-Mn(III)) = -6.6 cm(-1) and J(2)(Mn(III)-Mn(III)) = -5.4 cm(-1) for 1; J(1) = -5.5 cm(-1) and J(2)(Mn(III)-Mn(III)) = -3.9 cm(-1) for 2; J(1)(Mn(II)-Fe(III)) = -17.1 cm(-1) and J(2)(Fe(III)-Fe(III)) = -43.7 cm(-1) for 3; J(1) = -23.8 cm(-1) and J(2) = -53.4 cm(-1) for 4; J(1) = -13.3 cm(-1) and J(2) = -35.4 cm(-1) for 5. Intercluster coupling plays a significant role in all compounds 1-5.