Glycogen synthase kinase-3β, NF-κB signaling, and tumorigenesis of human osteosarcoma

J Natl Cancer Inst. 2012 May 16;104(10):749-63. doi: 10.1093/jnci/djs210. Epub 2012 Apr 24.


Background: Glycogen synthase kinase-3β (GSK-3β), a serine/threonine protein kinase, may function as a tumor suppressor or an oncogene, depending on the tumor type. We sought to determine the biological function of GSK-3β in osteosarcoma, a rare pediatric cancer for which the identification of new therapeutic targets is urgent.

Methods: We used cell viability assays, colony formation assays, and apoptosis assays to analyze the effects of altered GSK-3β expression in U2OS, MG63, SAOS2, U2OS/MTX300, and ZOS osteosarcoma cell lines. Nude mice (n = 5-8 mice per group) were injected with U2OS/MTX300, and ZOS cells to assess the role of GSK-3β in osteosarcoma growth in vivo and to evaluate the effects of inhibitors and/or anticancer drugs on tumor growth. We used an antibody array, polymerase chain reaction, western blotting, and a luciferase reporter assay to establish the effect of GSK-3β inhibition on the nuclear factor-κB (NF-κB) pathway. Immunochemistry was performed on primary tumor specimens from osteosarcoma patients (n = 74) to determine the relationship of GSK-3β activity with overall survival.

Results: Osteosarcoma cells with low levels of inactive p-Ser9-GSK-3β formed colonies in vitro and tumors in vivo more readily than cells with higher levels and cells in which GSK-3β had been silenced formed fewer colonies and smaller tumors than parental cells. Silencing or pharmacological inhibition of GSK-3β resulted in apoptosis of osteosarcoma cells. Inhibition of GSK-3β resulted in inhibition of the NF-κB pathway and reduction of NF-κB-mediated transcription. Combination treatments with GSK-3β inhibitors, NF-κB inhibitors, and chemotherapy drugs increased the effectiveness of chemotherapy drugs in vitro and in vivo. Patients whose osteosarcoma specimens had hyperactive GSK-3β, and nuclear NF-κB had a shorter median overall survival time (49.2 months) compared with patients whose tumors had inactive GSK-3β and NF-κB (109.2 months).

Conclusion: GSK-3β activity may promote osteosarcoma tumor growth, and therapeutic targeting of the GSK-3β and/or NF-κB pathways may be an effective way to enhance the therapeutic activity of anticancer drugs against osteosarcoma.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Apoptosis
  • Blotting, Western
  • Bone Neoplasms / metabolism*
  • Caspase 3 / metabolism
  • Cell Line, Tumor
  • Cell Survival
  • Gene Silencing
  • Glycogen Synthase Kinase 3 / antagonists & inhibitors*
  • Glycogen Synthase Kinase 3 / genetics
  • Glycogen Synthase Kinase 3 / metabolism*
  • Glycogen Synthase Kinase 3 beta
  • Humans
  • Immunohistochemistry
  • Luciferases / metabolism
  • Mice
  • Mice, Nude
  • NF-kappa B / metabolism*
  • Oncogenes
  • Osteosarcoma / metabolism*
  • Reverse Transcriptase Polymerase Chain Reaction
  • Signal Transduction*
  • Transplantation, Heterologous
  • Tumor Stem Cell Assay


  • NF-kappa B
  • Luciferases
  • GSK3B protein, human
  • Glycogen Synthase Kinase 3 beta
  • Gsk3b protein, mouse
  • Glycogen Synthase Kinase 3
  • Caspase 3