The role of Borrelia burgdorferi outer surface proteins

FEMS Immunol Med Microbiol. 2012 Oct;66(1):1-19. doi: 10.1111/j.1574-695X.2012.00980.x. Epub 2012 May 21.


Human pathogenic spirochetes causing Lyme disease belong to the Borrelia burgdorferi sensu lato complex. Borrelia burgdorferi organisms are extracellular pathogens transmitted to humans through the bite of Ixodes spp. ticks. These spirochetes are unique in that they can cause chronic infection and persist in the infected human, even though a robust humoral and cellular immune response is produced by the infected host. How this extracellular pathogen is able to evade the host immune response for such long periods of time is currently unclear. To gain a better understanding of how this organism persists in the infected human, many laboratories have focused on identifying and characterizing outer surface proteins of B. burgdorferi. As the interface between B. burgdorferi and its human host is its outer surface, proteins localized to the outer membrane must play an important role in dissemination, virulence, tissue tropism, and immune evasion. Over the last two decades, numerous outer surface proteins from B. burgdorferi have been identified, and more recent studies have begun to elucidate the functional role(s) of many borrelial outer surface proteins. This review summarizes the outer surface proteins identified in B. burgdorferi to date and provides detailed insight into the functions of many of these proteins as they relate to the unique parasitic strategy of this spirochetal pathogen.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Review

MeSH terms

  • Animals
  • Bacterial Outer Membrane Proteins / physiology*
  • Borrelia burgdorferi Group / immunology*
  • Borrelia burgdorferi Group / pathogenicity*
  • Humans
  • Immune Evasion*
  • Ixodes
  • Membrane Proteins / physiology*
  • Virulence Factors / physiology*


  • Bacterial Outer Membrane Proteins
  • Membrane Proteins
  • Virulence Factors