Cooperative interactions in the West Nile virus mutant swarm

BMC Evol Biol. 2012 May 22;12:58. doi: 10.1186/1471-2148-12-58.


Background: RNA viruses including arthropod-borne viruses (arboviruses) exist as highly genetically diverse mutant swarms within individual hosts. A more complete understanding of the phenotypic correlates of these diverse swarms is needed in order to equate RNA swarm breadth and composition to specific adaptive and evolutionary outcomes.

Results: Here, we determined clonal fitness landscapes of mosquito cell-adapted West Nile virus (WNV) and assessed how altering the capacity for interactions among variants affects mutant swarm dynamics and swarm fitness. Our results demonstrate that although there is significant mutational robustness in the WNV swarm, genetic diversity also corresponds to substantial phenotypic diversity in terms of relative fitness in vitro. In addition, our data demonstrate that increasing levels of co-infection can lead to widespread strain complementation, which acts to maintain high levels of phenotypic and genetic diversity and potentially slow selection for individual variants. Lastly, we show that cooperative interactions may lead to swarm fitness levels which exceed the relative fitness levels of any individual genotype.

Conclusions: These studies demonstrate the profound effects variant interactions can have on arbovirus evolution and adaptation, and provide a baseline by which to study the impact of this phenomenon in natural systems.

Publication types

  • Research Support, N.I.H., Extramural

MeSH terms

  • Animals
  • Cells, Cultured
  • Cloning, Molecular
  • Coinfection
  • Culex / virology
  • DNA, Viral / genetics
  • Evolution, Molecular*
  • Genetic Fitness*
  • Genetic Variation
  • Genotype
  • Molecular Sequence Data
  • Phenotype
  • Sequence Analysis, DNA
  • West Nile virus / genetics*


  • DNA, Viral

Associated data

  • GENBANK/JQ918659