Beyond counts and shapes: studying pathology of dendritic spines in the context of the surrounding neuropil through serial section electron microscopy

Neuroscience. 2013 Oct 22;251:75-89. doi: 10.1016/j.neuroscience.2012.04.061. Epub 2012 May 1.


Because dendritic spines are the sites of excitatory synapses, pathological changes in spine morphology should be considered as part of pathological changes in neuronal circuitry in the forms of synaptic connections and connectivity strength. In the past, spine pathology has usually been measured by changes in their number or shape. A more complete understanding of spine pathology requires visualization at the nanometer level to analyze how the changes in number and size affect their presynaptic partners and associated astrocytic processes, as well as organelles and other intracellular structures. Currently, serial section electron microscopy (ssEM) offers the best approach to address this issue because of its ability to image the volume of brain tissue at the nanometer resolution. Renewed interest in ssEM has led to recent technological advances in imaging techniques and improvements in computational tools indispensable for three-dimensional analyses of brain tissue volumes. Here we consider the small but growing literature that has used ssEM analysis to unravel ultrastructural changes in neuropil including dendritic spines. These findings have implications in altered synaptic connectivity and cell biological processes involved in neuropathology, and serve as anatomical substrates for understanding changes in network activity that may underlie clinical symptoms.

Keywords: 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine; 3D; 3D reconstruction; AD; ATLUM; Alzheimer’s disease; Aβ; CCD; DNMS; DS; Down’s syndrome; EM; FIB-SEM; GABA; MPTP; MSB; MSNs; MTLE; NSB; PSD; SA; SBFSEM; SEM; STEM; TEM; TEM camera array; TEMCA; amyloid β; automatic tape-collecting lathe ultramicrotome; charge-coupled device; connectome; delayed nonmatching-to-sample; electron microscopy; focused ion beam-SEM; medium spiny neurons; mesial temporal lobe epilepsy; multi-synaptic bouton; neuropil; non-synaptic bouton; pathology; postsynaptic density; scanning electron microscopy; scanning transmission electron microscopy; serial block face SEM; serial section electron microscopy; spine apparatus; ssEM; three-dimensional; transmission electron microscopy; ultrastructure; vGluT; vesicular glutamate transporter; γ-aminobutylic acid.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Review

MeSH terms

  • Brain / ultrastructure
  • Dendritic Spines / ultrastructure*
  • Microscopy, Electron, Scanning / methods*
  • Neuropil / ultrastructure*
  • Synapses / ultrastructure