Repression of toxin production by tryptophan in Clostridium botulinum type E
- PMID: 2256780
- DOI: 10.1007/BF00245225
Repression of toxin production by tryptophan in Clostridium botulinum type E
Abstract
Of the seven amino acids required by Clostridium botulinum type E, tryptophan is the most essential and may provide the cell with nitrogen. The addition of excess tryptophan (10-20 mM) or other nitrogenous nutrients to minimal growth medium markedly decreased toxin formation but did not affect growth in C. botulinum type E. On the other hand, the addition of an enzymatic digest of casein (NZ Case) stimulated toxin formation and overcame repression by tryptophan. Immunoblots of proteins in culture fluids using antibodies to type E toxin indicated that tryptophan-repressed cultures produced less neurotoxin protein. Inhibitors of neurotoxin did not accumulate in cultures grown in minimal medium supplemented with high tryptophan. The results suggest that tryptophan availability in foods or in the intestine may be important for toxin formation by C. botulinum type E.
Similar articles
-
Regulation of neurotoxin and protease formation in Clostridium botulinum Okra B and Hall A by arginine.Appl Environ Microbiol. 1989 Jun;55(6):1544-8. doi: 10.1128/aem.55.6.1544-1548.1989. Appl Environ Microbiol. 1989. PMID: 2669631 Free PMC article.
-
Regulation of Botulinum Neurotoxin Synthesis and Toxin Complex Formation by Arginine and Glucose in Clostridium botulinum ATCC 3502.Appl Environ Microbiol. 2017 Jun 16;83(13):e00642-17. doi: 10.1128/AEM.00642-17. Print 2017 Jul 1. Appl Environ Microbiol. 2017. PMID: 28455330 Free PMC article.
-
Comparative molecular topography of botulinum neurotoxins from Clostridium butyricum and Clostridium botulinum type E.Biochim Biophys Acta. 1991 Mar 8;1077(1):119-26. doi: 10.1016/0167-4838(91)90533-6. Biochim Biophys Acta. 1991. PMID: 1901221
-
Clostridium botulinum and its neurotoxins: a metabolic and cellular perspective.Toxicon. 2001 Nov;39(11):1703-22. doi: 10.1016/s0041-0101(01)00157-x. Toxicon. 2001. PMID: 11595633 Review.
-
Molecular pharmacology of botulinum toxin and tetanus toxin.Annu Rev Pharmacol Toxicol. 1986;26:427-53. doi: 10.1146/annurev.pa.26.040186.002235. Annu Rev Pharmacol Toxicol. 1986. PMID: 3521461 Review. No abstract available.
Cited by
-
Pathogenicity and virulence of Clostridium botulinum.Virulence. 2023 Dec;14(1):2205251. doi: 10.1080/21505594.2023.2205251. Virulence. 2023. PMID: 37157163 Free PMC article. Review.
-
Branched-chain amino acid catabolism of Thermoanaerobacter pseudoethanolicus reveals potential route to branched-chain alcohol formation.Extremophiles. 2020 Jan;24(1):121-133. doi: 10.1007/s00792-019-01140-5. Epub 2019 Oct 25. Extremophiles. 2020. PMID: 31654148
-
Positive regulation of botulinum neurotoxin gene expression by CodY in Clostridium botulinum ATCC 3502.Appl Environ Microbiol. 2014 Dec;80(24):7651-8. doi: 10.1128/AEM.02838-14. Epub 2014 Oct 3. Appl Environ Microbiol. 2014. PMID: 25281376 Free PMC article.
-
Two-component signal transduction system CBO0787/CBO0786 represses transcription from botulinum neurotoxin promoters in Clostridium botulinum ATCC 3502.PLoS Pathog. 2013 Mar;9(3):e1003252. doi: 10.1371/journal.ppat.1003252. Epub 2013 Mar 28. PLoS Pathog. 2013. PMID: 23555260 Free PMC article.
-
Quantitative interaction effects of carbon dioxide, sodium chloride, and sodium nitrite on neurotoxin gene expression in nonproteolytic Clostridium botulinum type B.Appl Environ Microbiol. 2004 May;70(5):2928-34. doi: 10.1128/AEM.70.5.2928-2934.2004. Appl Environ Microbiol. 2004. PMID: 15128553 Free PMC article.