Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2012;196(4):339-52.
doi: 10.1159/000335475. Epub 2012 May 8.

Evidence of the TNF-α system in the human Achilles tendon: expression of TNF-α and TNF receptor at both protein and mRNA levels in the tenocytes

Affiliations

Evidence of the TNF-α system in the human Achilles tendon: expression of TNF-α and TNF receptor at both protein and mRNA levels in the tenocytes

James Edmund Gaida et al. Cells Tissues Organs. 2012.

Abstract

Understanding adaption to load is essential for prevention and treatment of tendinopathy/tendinosis. Cytokine release in response to load is one mechanism involved in mechanotransduction. The cytokine tumor necrosis factor alpha (TNF-α) is implicated in tendinosis and can induce apoptotic effects via tumor necrosis factor receptor 1 (TNFR1). The complete absence of information concerning the TNF-α system in Achilles tendon is a limitation as mid-portion Achilles tendinosis is very frequent.

Purpose: To examine expression patterns of TNF-α and its two receptors (TNFR1 and TNFR2) in human Achilles tendinosis and control tissue and to biochemically confirm the presence of TNF-α in tendinosis tissue.

Methods: TNF-α and TNFR1 mRNA were detected via in situ hybridization. TNF-α, TNFR1, and TNFR2 were demonstrated immunohistochemically. Apoptosis markers were utilized. ELISA was used to detect TNF-α.

Results: TNF-α and TNFR1 mRNA was detected in tenocytes of both tendinosis and control tendons. Tenocytes from both groups displayed specific immunoreactions for TNF-α, TNFR1, and TNFR2. The widened/rounded tenocytes of tendinosis samples exhibited the most intense immunoreactions. Apoptosis was detected in only a subpopulation of the tenocytes in tendinosis tissue. TNF-α was measurable in tendinosis tissue. Inflammatory cells were not seen.

Conclusion: This is the first evidence of the existence of the TNF-α system in the human Achilles tendon. Findings are confirmed at mRNA and protein levels as well as biochemically. The TNF-α system was in principle confined to the tenocytes. The connection between tenocyte morphology and the expression pattern of TNF-α, TNFR1, and TNFR2 suggests that the TNF-α system may be involved in tenocyte activation in Achilles tendinosis.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms