Hydrogen evolution from aliphatic alcohols and 1,4-selective hydrogenation of NAD+ catalyzed by a [C,N] and a [C,C] cyclometalated organoiridium complex at room temperature in water

J Am Chem Soc. 2012 Jun 6;134(22):9417-27. doi: 10.1021/ja302788c. Epub 2012 May 29.

Abstract

A [C,N] cyclometalated Ir complex, [Ir(III)(Cp*)(4-(1H-pyrazol-1-yl-κN(2))benzoic acid-κC(3))(H(2)O)](2)SO(4) [1](2)·SO(4), was reduced by aliphatic alcohols to produce the corresponding hydride complex [Ir(III)(Cp*)(4-(1H-pyrazol-1-yl-κN(2))-benzoate-κC(3))H](-)4 at room temperature in a basic aqueous solution (pH 13.6). Formation of the hydride complex 4 was confirmed by (1)H and (13)C NMR, ESI MS, and UV-vis spectra. The [C,N] cyclometalated Ir-hydride complex 4 reacts with proton to generate a stoichiometric amount of hydrogen when the pH was decreased to pH 0.8 by the addition of diluted sulfuric acid. Photoirradiation (λ > 330 nm) of an aqueous solution of the [C,N] cyclometalated Ir-hydride complex 4 resulted in the quantitative conversion to a unique [C,C] cyclometalated Ir-hydride complex 5 with no byproduct. The complex 5 catalyzed hydrogen evolution from ethanol in a basic aqueous solution (pH 11.9) under ambient conditions. The 1,4-selective catalytic hydrogenation of β-nicotinamide adenine dinucleotide (NAD(+)) by ethanol was also made possible by the complex 1 to produce 1,4-dihydro-β-nicotinamide adenine dinucleotide (1,4-NADH) at room temperature. The overall catalytic mechanism of hydrogenation of NAD(+), accompanied by the oxidation of ethanol, was revealed on the basis of the kinetic analysis and detection of the reaction intermediates.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Alcohols / chemistry*
  • Catalysis
  • Cyclization
  • Hydrogen / chemistry*
  • Hydrogenation
  • Iridium / chemistry*
  • Molecular Structure
  • NAD / chemical synthesis*
  • NAD / chemistry
  • NAD / metabolism
  • Organometallic Compounds / chemistry*
  • Temperature*
  • Water / chemistry

Substances

  • Alcohols
  • Organometallic Compounds
  • Water
  • NAD
  • Iridium
  • Hydrogen