Virus-based piezoelectric energy generation
- PMID: 22581406
- DOI: 10.1038/nnano.2012.69
Virus-based piezoelectric energy generation
Abstract
Piezoelectric materials can convert mechanical energy into electrical energy, and piezoelectric devices made of a variety of inorganic materials and organic polymers have been demonstrated. However, synthesizing such materials often requires toxic starting compounds, harsh conditions and/or complex procedures. Previously, it was shown that hierarchically organized natural materials such as bones, collagen fibrils and peptide nanotubes can display piezoelectric properties. Here, we demonstrate that the piezoelectric and liquid-crystalline properties of M13 bacteriophage (phage) can be used to generate electrical energy. Using piezoresponse force microscopy, we characterize the structure-dependent piezoelectric properties of the phage at the molecular level. We then show that self-assembled thin films of phage can exhibit piezoelectric strengths of up to 7.8 pm V(-1). We also demonstrate that it is possible to modulate the dipole strength of the phage, hence tuning the piezoelectric response, by genetically engineering the major coat proteins of the phage. Finally, we develop a phage-based piezoelectric generator that produces up to 6 nA of current and 400 mV of potential and use it to operate a liquid-crystal display. Because biotechnology techniques enable large-scale production of genetically modified phages, phage-based piezoelectric materials potentially offer a simple and environmentally friendly approach to piezoelectric energy generation.
Comment in
-
Piezoelectric devices: Squeezed virus produces electricity.Nat Nanotechnol. 2012 May 13;7(6):343-4. doi: 10.1038/nnano.2012.85. Nat Nanotechnol. 2012. PMID: 22581407 No abstract available.
Similar articles
-
Piezoelectric devices: Squeezed virus produces electricity.Nat Nanotechnol. 2012 May 13;7(6):343-4. doi: 10.1038/nnano.2012.85. Nat Nanotechnol. 2012. PMID: 22581407 No abstract available.
-
Genetically Induced In Situ-Poling for Piezo-Active Biohybrid Nanowires.Adv Mater. 2019 Feb;31(6):e1805597. doi: 10.1002/adma.201805597. Epub 2018 Dec 13. Adv Mater. 2019. PMID: 30548703
-
Virus-Based Pyroelectricity.Adv Mater. 2023 Nov;35(46):e2305503. doi: 10.1002/adma.202305503. Epub 2023 Sep 20. Adv Mater. 2023. PMID: 37611920
-
Engineering M13 for phage display.Biomol Eng. 2001 Sep;18(2):57-63. doi: 10.1016/s1389-0344(01)00087-9. Biomol Eng. 2001. PMID: 11535417 Review.
-
Recent Developments and Prospects of M13- Bacteriophage Based Piezoelectric Energy Harvesting Devices.Nanomaterials (Basel). 2020 Jan 2;10(1):93. doi: 10.3390/nano10010093. Nanomaterials (Basel). 2020. PMID: 31906516 Free PMC article. Review.
Cited by
-
Sonic restoration: acoustic stimulation enhances plant growth-promoting fungi activity.Biol Lett. 2024 Oct;20(10):20240295. doi: 10.1098/rsbl.2024.0295. Epub 2024 Oct 2. Biol Lett. 2024. PMID: 39353567
-
Flexible, biodegradable ultrasonic wireless electrotherapy device based on highly self-aligned piezoelectric biofilms.Sci Adv. 2024 May 31;10(22):eadn0260. doi: 10.1126/sciadv.adn0260. Epub 2024 May 31. Sci Adv. 2024. PMID: 38820150 Free PMC article.
-
Piezoelectric Applications of Low-Dimensional Composites and Porous Materials.Materials (Basel). 2024 Feb 9;17(4):844. doi: 10.3390/ma17040844. Materials (Basel). 2024. PMID: 38399095 Free PMC article. Review.
-
Review of Piezoelectrical Materials Potentially Useful for Peripheral Nerve Repair.Biomedicines. 2023 Dec 1;11(12):3195. doi: 10.3390/biomedicines11123195. Biomedicines. 2023. PMID: 38137416 Free PMC article. Review.
-
Advances in Bioresorbable Triboelectric Nanogenerators.Chem Rev. 2023 Oct 11;123(19):11559-11618. doi: 10.1021/acs.chemrev.3c00301. Epub 2023 Sep 27. Chem Rev. 2023. PMID: 37756249 Free PMC article. Review.
References
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
