Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2012 Nov;35(11):2045-59.
doi: 10.1111/j.1365-3040.2012.02535.x. Epub 2012 Jun 6.

Spatial and temporal nature of reactive oxygen species production and programmed cell death in elm (Ulmus pumila L.) seeds during controlled deterioration

Affiliations
Free article

Spatial and temporal nature of reactive oxygen species production and programmed cell death in elm (Ulmus pumila L.) seeds during controlled deterioration

Die Hu et al. Plant Cell Environ. 2012 Nov.
Free article

Abstract

Seed deterioration is poorly understood and remains an active area for research. Seeds of elm (Ulmus pumila L.) were aged at 37 °C above water [controlled deterioration treatment (CDT)] for various lengths of time to assess programmed cell death (PCD) and reactive oxygen species (ROS) product in embryonic tissues during a 5 d period. The hallmarks of PCD were identified in the elm seeds during CDT including TUNEL experiments, DNA laddering, cytochrome c (cyt c) leakage and enzymatic activities. These analyses indicated that PCD occurred systematically and progressively in deteriorated elm seeds. Cyt c release and increase in caspase-3-like/DEVDase activity occurred during CDT, which could be suppressed by ascorbic acid (AsA) and caspase-3 inhibitor Ac-DEVD-CHO, respectively. In situ localization of ROS production indicated that the distinct spatial-temporal signature of ROS during CDT coincided with the changes in PCD hallmark features. Multiple antioxidant elements were activated during the first few days of CDT, but were subsequently depleted as PCD progressed. Taken together, our findings identify PCD as a key mechanism that occurs asymmetrically during elm seeds CDT and suggest an important role for PCD in seeds deterioration.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources