French children's exposure to metals via ingestion of indoor dust, outdoor playground dust and soil: contamination data

Environ Int. 2012 Sep 15;45:129-34. doi: 10.1016/j.envint.2012.04.010. Epub 2012 May 19.

Abstract

In addition to dietary exposure, children are exposed to metals via ingestion of soils and indoor dust, contaminated by natural or anthropogenic outdoor and indoor sources. The objective of this nationwide study was to assess metal contamination of soils and dust which young French children are exposed to. A sample of 484 children (6 months to 6 years) was constituted in order to obtain representative results for young French children. In each home indoor settled dust was sampled by a wipe in up to five rooms. Outdoor playgrounds were sampled with a soil sample ring (n=315) or with a wipe in case of hard surfaces (n=53). As, Cd, Cr, Cu, Mn, Pb, Sb, Sr, and V were measured because of their potential health concern due to soil and dust ingestion. The samples were digested with hydrochloric acid, and afterwards aqua regia in order to determine both leachable and total metal concentrations and loadings by mass spectrometry with a quadrupole ICP-MS. In indoor settled dust most (total) loadings were below the Limit of Quantification (LOQ), except for Pb and Sr, whose median loadings were respectively 9 and 10 μg/m². The 95th percentile of loadings were 2 μg/m² for As, <0.8 for Cd, 18 for Cr, 49 for Cu, <64 for Mn, 63 for Pb, 2 for Sb, 56 for Sr, and <8 for V. Median/95th percentile of loadings in settled dust on outdoor playgrounds were 2/16, <0.8/1.3, 17/53, 49/330, 99/424, 32/393, 2/13, 86/661 and 10/37 μg/m² for As, Cd, Cr, Cu, Mn, Pb, Sb, Sr, and V respectively. In outdoor playground soil median/95th percentile of concentrations (μg/g) were 8/26, <0.65/1, 25/52, <26/53,391/956, 27/254, 0.7/4, 54/295, 23/57 for As, Cd, Cr, Cu, Mn, Pb, Sb, Sr, and V respectively. These results are comparable with those observed in other countries. Because of their representative nature, we can assess children's exposures to these metals via soil and dust and the associated risks in urban and rural environments. Ratios of leachable/total concentrations and loadings, calculated on >LOQ measurements, differed among metals. To a lesser extent, they were also affected by type of matrix, with (except for Cd) a greater leachability of dust (especially indoor) compared to soils.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Air Pollutants / analysis
  • Air Pollution, Indoor / statistics & numerical data
  • Child
  • Child Day Care Centers / statistics & numerical data
  • Child, Preschool
  • Dust / analysis*
  • Environmental Exposure / statistics & numerical data*
  • Female
  • France
  • Humans
  • Infant
  • Male
  • Metals / analysis*
  • Soil / chemistry*
  • Soil Pollutants / analysis*

Substances

  • Air Pollutants
  • Dust
  • Metals
  • Soil
  • Soil Pollutants