Frequency- and state-dependent blockade of human ether-a-go-go-related gene K+ channel by arecoline hydrobromide

Chin Med J (Engl). 2012 Mar;125(6):1068-75.

Abstract

Background: The rapidly activating delayed rectifier potassium current (I(Kr)), whose pore-forming alpha subunit is encoded by the human ether-a-go-go-related gene (hERG), is a key contributor to the third phase of action potential repolarization. The aim of this study was to investigate the effect and mechanism of arecoline hydrobromide induced inhibition of hERG K(+) current (I(hERG)).

Methods: Transient transfection of hERG channel cDNA plasmid pcDNA3.1 into the cultured HEK293 cells was performed using Lipofectamine. A standard whole-cell patch-clamp technique was used to record the I(hERG) before and after the exposure to arecoline.

Results: Arecoline decreased the amplitude and the density of the I(hERG) in a concentration-dependent manner (IC(50) = 9.55 mmol/L). At test potential of +60 mV, the magnitude of I(hERG) tail at test pulse of -40 mV was reduced from (151.7 ± 6.2) pA/pF to (84.4 ± 7.6) pA/pF (P < 0.01, n = 20) and the magnitude of I(hERG) tail at test pulse of -110 mV was reduced from (-187.5 ± 9.8) pA/pF to (-97.6 ± 12.6) pA/pF (P < 0.01, n = 20). The blockade of arecoline in the open and inactivated state was significant in a state-dependent manner. The maximal blockade was achieved in the inactivated state. Studies of gating mechanism showed that the steady-state activation curve of I(hERG) was significantly negatively shifted by arecoline. Time constants of activation were shortened. Steady-state inactivation curve and time constants of fast inactivation were not significantly affected by arecoline. Furthermore, the inhibition of I(hERG) by arecoline was characterized markedly by a frequency-dependent manner from 0.03 to 1.00 Hz pulse.

Conclusion: Arecoline could potently block I(hERG) in both frequency and state-dependent manner.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Action Potentials / drug effects
  • Arecoline / pharmacology*
  • Dose-Response Relationship, Drug
  • ERG1 Potassium Channel
  • Ether-A-Go-Go Potassium Channels / antagonists & inhibitors*
  • Ether-A-Go-Go Potassium Channels / physiology
  • HEK293 Cells
  • Humans

Substances

  • ERG1 Potassium Channel
  • Ether-A-Go-Go Potassium Channels
  • KCNH2 protein, human
  • Arecoline