Calcium Signaling and Neurodegeneration

Acta Naturae. 2010 Apr;2(1):72-82.


Neurodegenerative disorders, such as Alzheimer's disease (AD), Parkinson's disease (PD), amyotrophic lateral sclerosis (ALS), Huntington's disease (HD), and spinocerebellar ataxias (SCA) are very important both for fundamental science and for practical medicine. Despite extensive research into the causes of these diseases, clinical researchers have had very limited progress and, as of now, there is still no cure for any of these diseases. One of the main obstacles in the way of creating treatments for these disorders is the fact that their etiology and pathophysiology still remain unclear. This paper reviews results that support the so-called "calcium hypothesis of neurodegenerative diseases." The calcium hypothesis states that the atrophic and degenerative processes in the neurons of AD, PD, ALS, HD, and SCA patients are accompanied by alterations in calcium homeostasis. Moreover, the calcium hypothesis states that this deregulation of calcium signaling is one of the early-stage and key processes in the pathogenesis of these diseases. Based on the results we reviewed, we conclude that the calcium channels and other proteins involved in the neuronal calcium signaling system are potential drug targets for AD, PD, ALS, HD, and SCA therapy.

Keywords: Alzheimer’s disease; Huntington’s disease; Parkinson’s disease (PD); amyotrophic lateral sclerosis; calcium channels; calcium signaling; clinical trials; dimebon; imaging; memantine; mitochondria; riluzole; spinocerbellar ataxias; transgenic mice.