Skip to main page content
Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
, 7 (6), e38319

Microbial and Chemical Characterization of Underwater Fresh Water Springs in the Dead Sea


Microbial and Chemical Characterization of Underwater Fresh Water Springs in the Dead Sea

Danny Ionescu et al. PLoS One.


Due to its extreme salinity and high Mg concentration the Dead Sea is characterized by a very low density of cells most of which are Archaea. We discovered several underwater fresh to brackish water springs in the Dead Sea harboring dense microbial communities. We provide the first characterization of these communities, discuss their possible origin, hydrochemical environment, energetic resources and the putative biogeochemical pathways they are mediating. Pyrosequencing of the 16S rRNA gene and community fingerprinting methods showed that the spring community originates from the Dead Sea sediments and not from the aquifer. Furthermore, it suggested that there is a dense Archaeal community in the shoreline pore water of the lake. Sequences of bacterial sulfate reducers, nitrifiers iron oxidizers and iron reducers were identified as well. Analysis of white and green biofilms suggested that sulfide oxidation through chemolitotrophy and phototrophy is highly significant. Hyperspectral analysis showed a tight association between abundant green sulfur bacteria and cyanobacteria in the green biofilms. Together, our findings show that the Dead Sea floor harbors diverse microbial communities, part of which is not known from other hypersaline environments. Analysis of the water's chemistry shows evidence of microbial activity along the path and suggests that the springs supply nitrogen, phosphorus and organic matter to the microbial communities in the Dead Sea. The underwater springs are a newly recognized water source for the Dead Sea. Their input of microorganisms and nutrients needs to be considered in the assessment of possible impact of dilution events of the lake surface waters, such as those that will occur in the future due to the intended establishment of the Red Sea-Dead Sea water conduit.

Conflict of interest statement

Competing Interests: JP is an employee of Ribocon German Federal Ministry of Education and Science. There are no patents, products in development or marketed products to declare. This does not alter the authors’ adherence to all the PLoS ONE policies on sharing data and materials, as detailed online in the guide for authors.


Figure 1
Figure 1. Locations of the sampling sites on the west coast of the Dead Sea, showing the northern and southern spring systems.
Underwater springs with the corresponding reference site are marked with blue and red circles, whereas shore springs together with their reference site are marked with green and red squares, respectively. The open-water reference site for the shore springs was used only for comparison of dissolved organic matter (DOM) and total dissolved nitrogen (TDN). The open blue circle is located in the center of an underwater spring upwelling and was sampled for DOM and TDN analysis. The contour lines on the left panel represent the yearly drop in the lake level and are a close approximation of the areal topography. The satellite image was created using Google Earth.
Figure 2
Figure 2. Sketch of the northern spring system.
The water seep shown on the slope of the sketch is found only in deeper parts of the southern system where water seeps through the sediment surface over a large area without defined boundaries. The shafts have steep, laminated walls (see Fig. S1A) and contain one or more springs (blue). Localized water sources are either directly visible on the shaft bottom (Fig. S1B) or are hidden within deeper cavities (Fig. S1C). In the southern spring system (not shown in the sketch) springs do not form shafts and are covered by cobbles (Fig. S1D).
Figure 3
Figure 3. Seawater normalized (Csw) concentrations of major ions in waters from the underwater springs (A) and from reference sites (B).
The concentrations are listed in Table 2 and in Table S1. The ions are arranged along the x-axis based on their natural behavior: heavy alkalis Cs and Rb are mainly controlled by surfaces such as those of clay minerals; K, Na, Cl and Br stand for brines and salt minerals (halides); SO4, Ca, Sr, Mg, Ba and HCO3 represent dissolved species from carbonate-sulfate minerals (e.g., anhydrite/gypsum, aragonite and barite). All these minerals are abundant in the Dead Sea sediments. (C) Ratios between the measured ion concentrations and those calculated by a two-component mixing model (see Table 2 for the estimated mixing coefficients) using the Jericho 5 freshwater and either the Dead Sea pore water or the Qedem brine as end-members.
Figure 4
Figure 4. Rare Earth elements and Yttrium (REY) pattern in underwater springs (solid lines with symbols) and in diverse ground waters from the local area with comparable patterns (dashed lines).
The origin of the different waters is explained in Table 1, the REY concentrations are given in Table S2. Whole-rock REY patterns for the Judea Group limestone and the Cretaceous marl are also presented (data taken from Möller et al. [28]). Their normalized values are shifted by 10−7 (limestone) and 10−8 (marl) to ease the comparison. The fractionation patterns separate the springs into two major groups, the “Limestone” group (A) and the “Dead Sea” group, which is divided into two subgroups (B–C). Note logarithmic scale in all panels.
Figure 5
Figure 5. (A) Examples of absorption spectra of green biofilm samples from spring 12.
Locations where these spectra were taken are shown by arrows in panel C. Major peaks at 675 nm and 740 nm correspond to in vivo absorption maxima of chlorophyll a and bacteriochlorophyll c, respectively. (B–C) Distributions of pigments in whole-biofilm samples (B) and inbiofilm samples under the microscope(C). Pigments characteristic for cyanobacteria (chlorophyll a and phycocyanin) are shown in red, whereas the pigment characteristic for green sulfur bacteria (bacteriochlorophyll c) is shown in green. Cyanobacteria were always co-localized with the green sulfur bacteria and never detected alone.
Figure 6
Figure 6. (A) Total counts of DAPI-stained cells and (B) percentage abundance of Archaea and Bacteria within the total cell counts in water samples collected from different underwater springs and from the reference Dead Sea water.
Wn denotes water sample from spring n. Error-bars indicate standard error (N = 10); NA = data not available.
Figure 7
Figure 7. Non Metric Multidimensional Scaling (NMDS) plots derived by the DICE algorithm from the (A) 454 pyrosequencing and (B) ARISA data, using stress values of 13% and 7%, respectively.
Clustering of the pyrosequencing data was performed on the data matrix produced by the NGS system at a taxonomic depth of 5 (Family level). Duplicate samples represent biological replicates. Data for the 1992 and 2007 analyses where obtained from Rhodes et al and Bodaker et al respectively.
Figure 8
Figure 8. Graphical representation of the sequence frequency in the studied Dead Sea samples, showing major detected classes within the Bacterial and Archaeal domains.
Classes belonging to Crenarchaea and Euryarchaea are marked by brackets 1 and 2, respectively. The Halobacteria and Thermoplasmata classes are shown also at the family level to facilitate a more specific sample comparison. The color of the symbol represents the relative frequency of the taxonomic path within the sample. The size of the symbol represents the number of OTUs at deeper phylogenetic levels within that taxonomic path (see Methods for the definition of OTU). The shape of the symbol represents the number of sequences in the specific taxonomic path. Columns are shaded according to the sample type: blue = spring water, brown = spring sediment, grey = white biofilms from northern springs, white = white biofilms from southern springs, green = green biofilms from southern springs. Abbreviations in sample names: W = spring water. S = spring sediment, WB = white biofilm, GB = green biofilm, S-REF = reference sediment from the Dead Sea.
Figure 9
Figure 9. Graphical representation of the sequence frequency in the studied Dead Sea samples, showing major detected phyla and families of different functional groups of Bacteria.
PSB and PNSB in panel B refer to purple sulfur and non sulfur bacteria, respectively. The different genera within the families Chlorobiaceae,Campylobacteraceae and Helicobacteraceaeare shown to facilitate a more specific sample comparison. The symbols and sample naming are explained in detail in Fig. 8. Note different legends for OTU/path for each panel, and scale-bars for relative sequence frequency for several combined panels.

Similar articles

See all similar articles

Cited by 31 PubMed Central articles

See all "Cited by" articles


    1. Anati DA, Stiller M, Shasha S, Gat, Joel R. Changes in the thermo-haline structure of the Dead Sea?: 1979–1984. Earth Planet Sci Lett. 1987;84:121.
    1. Oren A. The dying Dead Sea: The microbiology of an increasingly extreme environment. Lakes Reservoirs: Res Manage. 2010;15:222.
    1. Steinhorn I, Assaf G, Gat, JR, Nishry A, Nissenbaum A. The dead sea: deepening of the mixolimnion signifies the overture to overturn of the water column. Science. 1979;206:57. - PubMed
    1. Wilkansky B. Life in the Dead Sea. Nature. 1936;138:467.
    1. Elazari-Volcani B. Algae in the bed of the Dead Sea. Nature. 1940;145:975.

Publication types

MeSH terms