Full exploration of the Diels-Alder cycloaddition on metallofullerenes M3N@C80 (M = Sc, Lu, Gd): the D(5h) versus I(h) isomer and the influence of the metal cluster

Chemistry. 2012 Jul 16;18(29):8944-56. doi: 10.1002/chem.201200940. Epub 2012 Jun 12.

Abstract

In this work a detailed investigation of the exohedral reactivity of the most important and abundant endohedral metallofullerene (EMF) is provided, that is, Sc(3)N@I(h)-C(80) and its D(5h) counterpart Sc(3)N@D(5h)-C(80) , and the (bio)chemically relevant lutetium- and gadolinium-based M(3)N@I(h)/D(5h)-C(80) EMFs (M = Sc, Lu, Gd). In particular, we analyze the thermodynamics and kinetics of the Diels-Alder cycloaddition of s-cis-1,3-butadiene on all the different bonds of the I(h)-C(80) and D(5h)-C(80) cages and their endohedral derivatives. First, we discuss the thermodynamic and kinetic aspects of the cycloaddition reaction on the hollow fullerenes and the two isomers of Sc(3)N@C(80). Afterwards, the effect of the nature of the metal nitride is analyzed in detail. In general, our BP86/TZP//BP86/DZP calculations indicate that [5,6] bonds are more reactive than [6,6] bonds for the two isomers. The [5,6] bond D(5h)-b, which is the most similar to the unique [5,6] bond type in the icosahedral cage, I(h)-a, is the most reactive bond in M(3)N@D(5h)-C(80) regardless of M. Sc(3)N@C(80) and Lu(3)N@C(80) give similar results; the regioselectivity is, however, significantly reduced for the larger and more electropositive M = Gd, as previously found in similar metallofullerenes. Calculations also show that the D(5h) isomer is more reactive from the kinetic point of view than the I(h) one in all cases which is in good agreement with experiments.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Cyclization
  • Fullerenes / chemistry*
  • Gadolinium / chemistry*
  • Isomerism
  • Kinetics
  • Lutetium / chemistry*
  • Metals / chemistry*
  • Models, Molecular
  • Scandium / chemistry*

Substances

  • Fullerenes
  • Metals
  • Lutetium
  • Gadolinium
  • Scandium