Independent eye movements in the turtle

Vis Neurosci. 1990 Jul;5(1):29-41. doi: 10.1017/s0952523800000055.


In order to evaluate the normal eye movements of the turtle, Pseudemys scripta elegans, the positions of each eye were recorded simultaneously using two search-coil contact lenses. Optokinetic nystagmus (OKN) was strikingly unyoked in this animal such that one eye's slow-phase velocity was substantially independent of that of the other eye. On the other hand, the fast-phase motions of both eyes occurred more or less in synchrony. An eye's slow-phase gain is primarily dependent on the direction and velocity of the stimulus to that eye. Using monocular stimuli, the highest mean gain (0.54 +/- 0.047; mean +/- standard error of mean) occurred using temporal-to-nasal movement at 2.5 deg/s. The mean OKN gain for nasal-to-temporal movement was only 0.13 +/- 0.015 at that velocity. Additionally, using the optimal monocular stimulus (temporal-to-nasal stimulation at 2.5 deg/s) only drove the occluded eye to move nasal-to-temporally at 0.085 deg/s, equivalent to a "gain" of only 0.034 +/- 0.011. The binocular OKN gain during rotational stimuli was higher than monocular gain, especially during nasal-to-temporal movement at high velocities. Also the difference in slow-phase eye velocity between the two eyes was smaller during binocular rotational stimuli. In contrast, when each eye simultaneously viewed its temporal-to-nasal stimulus at an equal velocity, two behaviors were observed. Often, OKN alternated between an animal's left eye and right eye. Occasionally, both eyes moved at equal but opposite velocities. These behavioral data provide a quantitative baseline to interpret the properties of the retinal slip information in the turtle's accessory optic system. Those properties are similar to the behavior of the turtle in that both are tuned to direction and velocity independently for each eye (Rosenberg & Ariel, 1990).

Publication types

  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Animals
  • Eye Movements / physiology*
  • Turtles / physiology*
  • Vision, Binocular
  • Vision, Monocular
  • Visual Fields