Contrast-to-noise ratio and low-contrast object resolution on full- and low-dose MDCT: SAFIRE versus filtered back projection in a low-contrast object phantom and in the liver

AJR Am J Roentgenol. 2012 Jul;199(1):8-18. doi: 10.2214/AJR.11.7421.

Abstract

Objective: The purpose of this article is to evaluate the effect of sinogram-affirmed iterative reconstruction (SAFIRE) on contrast-to-noise ratio (CNR) compared with filtered back projection (FBP) and to determine whether SAFIRE improves low-contrast object detection or conspicuity in a low-contrast object phantom and in the liver on full- and low-dose examinations.

Subjects and methods: A low-contrast object phantom was scanned at 100%, 70%, 50%, and 30% dose using a single-source made of a dual-source MDCT scanner, with the raw data reconstructed with SAFIRE and FBP. Unenhanced liver CT scans in 22 patients were performed using a dual-source MDCT. The raw data from both tubes (100% dose) were reconstructed using FBP, and data from one tube (50% dose) were reconstructed using both FBP and SAFIRE. CNR was measured in the phantom and in the liver. Noise, contrast, and CNR were compared using paired Student t tests. Six readers assessed sphere detection and conspicuity in the phantom and liver-inferior vena cava conspicuity in the patient data. The phantom and patient data were assessed using multiple-variable logistic regression.

Results: The phantom at 70% and 50% doses with SAFIRE had decreased noise and increased CNR compared with the 100% dose with FBP. In the liver, the mean CNR improvement at 50% dose with SAFIRE compared with FBP was 31.4% and 88% at 100% and 50% doses, respectively (p < 0.001). Sphere object detection and conspicuity improved with SAFIRE (p < 0.001). However, smaller spheres were obscured on both FBP and SAFIRE images at lower doses. Liver-vessel conspicuity improved with SAFIRE over 50%-dose FBP in 67.4% of cases (p < 0.001), and versus 100%-dose FBP, improved in 38.6% of cases (p = 0.085). As a predictor for detection, CNR alone had a discriminatory ability (c-index, 0.970) similar to that of the model that analyzed dose, lesion size, attenuation difference, and reconstruction technique (c-index, 0.978).

Conclusion: Lower dose scans reconstructed with SAFIRE have a higher CNR. The ability of SAFIRE to improve low-contrast object detection and conspicuity depends on the radiation dose level. At low radiation doses, low-contrast objects are invisible, regardless of reconstruction technique.

Publication types

  • Evaluation Study
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adult
  • Aged
  • Aged, 80 and over
  • Algorithms*
  • Female
  • Humans
  • Liver / diagnostic imaging*
  • Male
  • Middle Aged
  • Models, Theoretical
  • Phantoms, Imaging*
  • Radiation Dosage
  • Radiographic Image Enhancement / methods*
  • Tomography, X-Ray Computed / instrumentation*
  • Vena Cava, Inferior / diagnostic imaging