Cyclotron production of ⁹⁹mTc: recycling of enriched ¹⁰⁰Mo metal targets

Appl Radiat Isot. 2012 Aug;70(8):1685-90. doi: 10.1016/j.apradiso.2012.04.016. Epub 2012 Apr 25.


There is growing interest in the large scale cyclotron production of (99m)Tc via the (100)Mo(p,2n)(99m)Tc reaction. While the use and recycling of cyclotron-irradiated enriched molybdenum targets has been reported previously in the context of (94m)Tc production, to the best of our knowledge, previous recycling studies have been limited to the use of oxide targets. To facilitate reuse of high-power enriched (100)Mo targets, this work presents and evaluates a strategy for recycling of enriched metallic molybdenum. For the irradiated (100)Mo targets in this study, an overall metal to metal recovery of 87% is reported. Evaluation of "new" and "recycled" (100)Mo revealed no changes in the molybdenum isotopic composition (as measured via ICP-MS). For similar irradiation conditions of "new" and "recycled" (100)Mo, (i.e. target thicknesses, irradiation time, and energy), comparable levels of (94g)Tc, (95g)Tc, and (96g)Tc contaminants were observed. Comparable QC specifications (i.e. aluminum ion concentration, pH, and radiochemical purity) were also reported. We finally note that [(99m)Tc]-MDP images obtained by comparing MDP labelled with generator-based (99m)Tc vs. (99m)Tc obtained following the irradiation of recycled (100)Mo demonstrated comparable biodistribution. With the goal of producing large quantities of (99m)Tc, the proposed methodology demonstrates that efficient recycling of enriched metallic (100)Mo targets is feasible and effective.