Chicken manure biochar as liming and nutrient source for acid Appalachian soil

J Environ Qual. 2012 Jul-Aug;41(4):1096-106. doi: 10.2134/jeq2011.0124.

Abstract

Acid weathered soils often require lime and fertilizer application to overcome nutrient deficiencies and metal toxicity to increase soil productivity. Slow-pyrolysis chicken manure biochars, produced at 350 and 700°C with and without subsequent steam activation, were evaluated in an incubation study as soil amendments for a representative acid and highly weathered soil from Appalachia. Biochars were mixed at 5, 10, 20, and 40 g kg into a Gilpin soil (fine-loamy, mixed, active, mesic Typic Hapludult) and incubated in a climate-controlled chamber for 8 wk, along with a nonamended control and soil amended with agronomic dolomitic lime (AgLime). At the end of the incubation, soil pH, nutrient availability (by Mehlich-3 and ammonium bicarbonate diethylene triamine pentaacetic acid [AB-DTPA] extractions), and soil leachate composition were evaluated. Biochar effect on soil pH was process- and rate-dependent. Biochar increased soil pH from 4.8 to 6.6 at the high application rate (40 g kg), but was less effective than AgLime. Biochar produced at 350°C without activation had the least effect on soil pH. Biochar increased soil Mehlich-3 extractable micro- and macronutrients. On the basis of unit element applied, increase in pyrolysis temperature and biochar activation decreased availability of K, P, and S compared to nonactivated biochar produced at 350°C. Activated biochars reduced AB-DTPA extractable Al and Cd more than AgLime. Biochar did not increase NO in leachate, but increased dissolved organic carbon, total N and P, PO, SO, and K at high application rate (40 g kg). Risks of elevated levels of dissolved P may limit chicken manure biochar application rate. Applied at low rates, these biochars provide added nutritional value with low adverse impact on leachate composition.

MeSH terms

  • Animals
  • Appalachian Region
  • Charcoal*
  • Chickens*
  • Hydrogen-Ion Concentration
  • Manure*
  • Soil / chemistry*
  • Temperature

Substances

  • Manure
  • Soil
  • biochar
  • Charcoal