Dietary curcumin inhibits atherosclerosis by affecting the expression of genes involved in leukocyte adhesion and transendothelial migration

Mol Nutr Food Res. 2012 Aug;56(8):1270-81. doi: 10.1002/mnfr.201100818. Epub 2012 Jul 2.

Abstract

Scope: The aim of the study was to examine the atheroprotective effect of dietary curcumin in a mouse model of atherosclerosis and to identify its cellular and molecular targets at the vascular level.

Methods and results: ApoE(-/-) mice were fed with curcumin at 0.2% (wt/wt) in diet for 4 months. This supplementation reduced the extent of atherosclerotic lesion by 26% and induced changes in expression of genes implicated in cell adhesion and transendothelial migration or cytoskeleton organization, as revealed by a transcriptomic analysis in the aorta. Expression profile of these genes suggests reduction in both leukocyte adhesion and transendothelial migration. In agreement with this hypothesis, we observed a reduction (-37%) in macrophage infiltration in the plaque, as measured by immunohistochemistry, and, in vitro, a lower adhesion of monocytes to TNF-α-stimulated endothelial cells (-32%) after exposure to a nutritionally achievable concentration of curcumin. These changes in gene expression could be related to the observed increased expression of IκB protein and decrease of TNF-α-induced NF-κB/DNA binding and NF-κB-transcriptional activity upon exposure to curcumin.

Conclusion: Our findings pointed out that the antiatherogenic effect of curcumin could be linked to its effect on gene networks and cell functions related to leukocyte adhesion and transendothelial migration via NF-κB-dependent pathways.

MeSH terms

  • Animals
  • Aorta / drug effects
  • Apolipoproteins E / genetics
  • Atherosclerosis / drug therapy*
  • Atherosclerosis / genetics*
  • Atherosclerosis / pathology
  • Cell Adhesion / drug effects
  • Cell Adhesion / genetics
  • Curcumin / pharmacology*
  • Dietary Supplements
  • Endothelial Cells / drug effects
  • Gene Expression Regulation / drug effects
  • I-kappa B Proteins / genetics
  • Leukocytes / drug effects*
  • Macrophages / drug effects
  • Mice
  • Mice, Mutant Strains
  • Monocytes / cytology
  • Monocytes / drug effects
  • NF-kappa B / genetics
  • NF-kappa B / metabolism
  • Protective Agents / pharmacology
  • Transendothelial and Transepithelial Migration / drug effects*
  • Tumor Necrosis Factor-alpha / pharmacology

Substances

  • Apolipoproteins E
  • I-kappa B Proteins
  • NF-kappa B
  • Protective Agents
  • Tumor Necrosis Factor-alpha
  • Curcumin