Negligible particle-specific antibacterial activity of silver nanoparticles

Nano Lett. 2012 Aug 8;12(8):4271-5. doi: 10.1021/nl301934w. Epub 2012 Jul 9.


For nearly a decade, researchers have debated the mechanisms by which AgNPs exert toxicity to bacteria and other organisms. The most elusive question has been whether the AgNPs exert direct "particle-specific" effects beyond the known antimicrobial activity of released silver ions (Ag(+)). Here, we infer that Ag(+) is the definitive molecular toxicant. We rule out direct particle-specific biological effects by showing the lack of toxicity of AgNPs when synthesized and tested under strictly anaerobic conditions that preclude Ag(0) oxidation and Ag(+) release. Furthermore, we demonstrate that the toxicity of various AgNPs (PEG- or PVP- coated, of three different sizes each) accurately follows the dose-response pattern of E. coli exposed to Ag(+) (added as AgNO(3)). Surprisingly, E. coli survival was stimulated by relatively low (sublethal) concentration of all tested AgNPs and AgNO(3) (at 3-8 μg/L Ag(+), or 12-31% of the minimum lethal concentration (MLC)), suggesting a hormetic response that would be counterproductive to antimicrobial applications. Overall, this work suggests that AgNP morphological properties known to affect antimicrobial activity are indirect effectors that primarily influence Ag(+) release. Accordingly, antibacterial activity could be controlled (and environmental impacts could be mitigated) by modulating Ag(+) release, possibly through manipulation of oxygen availability, particle size, shape, and/or type of coating.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Anti-Bacterial Agents / chemistry
  • Anti-Bacterial Agents / pharmacology*
  • Dose-Response Relationship, Drug
  • Escherichia coli / drug effects*
  • Metal Nanoparticles / chemistry*
  • Microbial Sensitivity Tests
  • Particle Size
  • Silver / chemistry
  • Silver / pharmacology*
  • Structure-Activity Relationship
  • Surface Properties


  • Anti-Bacterial Agents
  • Silver