The possible role of the Akt signaling pathway in schizophrenia

Brain Res. 2012 Aug 27;1470:145-58. doi: 10.1016/j.brainres.2012.06.032. Epub 2012 Jul 4.

Abstract

Serine/threonine protein kinase v-akt murine thymoma viral oncogene homolog (Akt) is one of the survival kinases with multiple biological functions in the brain and throughout the body. Schizophrenia is one of the most devastating psychiatric disorders. Accumulating evidence has indicated the involvement of the Akt signaling pathway in the pathogenesis of this disorder. Genetic linkage and association studies have identified Akt-1 as a candidate susceptibility gene related for schizophrenia. The level of Akt-1 protein and its kinase activity decreased significantly both in white blood cells from schizophrenic patients and in postmortem brain tissue of schizophrenic patients. Consistent with these findings, alterations in the upstream and downstream pathways of Akt have also been found in many psychiatric disorders. Furthermore, both typical and atypical antipsychotic drugs modify the Akt signaling pathway in a variety of conditions relative to schizophrenia. In addition as a survival kinase, Akt participates in neurodevelopment, synaptic plasticity, protein synthesis and neurotransmission in the central nervous system. It is thought that reduced activity of phosphatidylinositol 3-kinase (PI3K)/Akt signaling pathway could at least partially explain the cognitive impairment, synaptic morphologic abnormality, neuronal atrophy and dysfunction of neurotransmitter signaling in schizophrenia. In addition, reduced levels of Akt may increase the effects of risk factors on neurodevelopment, attenuate the effects of growth factors on neurodevelopment and reduce the response of patients to antipsychotic agents. More recently, the role of Akt signaling in the functions of schizophrenia susceptibility genes such as disrupted-in-schizophrenia 1 (DISC-1), neuregulin-1 (NRG-1) and dysbindin-1 has been reported. Thus, Akt deficiency may create a context permissive for the expression of risk-gene effects in neuronal morphology and function. This paper reviews the role of Akt in the pathophysiology of schizophrenia and as a potential therapeutic strategy targeting Akt.

Publication types

  • Research Support, Non-U.S. Gov't
  • Review

MeSH terms

  • Animals
  • Humans
  • Proto-Oncogene Proteins c-akt / genetics*
  • Proto-Oncogene Proteins c-akt / metabolism*
  • Schizophrenia / genetics*
  • Schizophrenia / metabolism*
  • Signal Transduction / physiology*

Substances

  • Proto-Oncogene Proteins c-akt