Degrees of chloroquine resistance in Plasmodium - is the redox system involved?

Int J Parasitol Drugs Drug Resist. 2012 Dec 1:2:47-57. doi: 10.1016/j.ijpddr.2011.11.001.

Abstract

Chloroquine (CQ) was once a very effective antimalarial drug that, at its peak, was consumed in the hundreds of millions of doses per year. The drug acts against the Plasmodium parasite during the asexual intraerythrocytic phase of its lifecycle. Unfortunately, clinical resistance to this drug is now widespread. Questions remain about precisely how CQ kills malaria parasites, and by what means some CQ-resistant (CQR) parasites can withstand much higher concentrations of the drug than others that also fall in the CQR category. In this review we investigate the evidence for and against the proposal that CQ kills parasites by generating oxidative stress. Further, we examine a long-held idea that the glutathione system of malaria parasites plays a role in CQ resistance. We conclude that there is strong evidence that glutathione levels modulate CQ response in the rodent malaria species P. berghei, but that a role for redox in contributing to the degree of CQ resistance in species infectious to humans has not been firmly established.