AT13148 is a novel, oral multi-AGC kinase inhibitor with potent pharmacodynamic and antitumor activity

Clin Cancer Res. 2012 Jul 15;18(14):3912-23. doi: 10.1158/1078-0432.CCR-11-3313. Epub 2012 Jul 10.

Abstract

Purpose: Deregulated phosphatidylinositol 3-kinase pathway signaling through AGC kinases including AKT, p70S6 kinase, PKA, SGK and Rho kinase is a key driver of multiple cancers. The simultaneous inhibition of multiple AGC kinases may increase antitumor activity and minimize clinical resistance compared with a single pathway component.

Experimental design: We investigated the detailed pharmacology and antitumor activity of the novel clinical drug candidate AT13148, an oral ATP-competitive multi-AGC kinase inhibitor. Gene expression microarray studies were undertaken to characterize the molecular mechanisms of action of AT13148.

Results: AT13148 caused substantial blockade of AKT, p70S6K, PKA, ROCK, and SGK substrate phosphorylation and induced apoptosis in a concentration and time-dependent manner in cancer cells with clinically relevant genetic defects in vitro and in vivo. Antitumor efficacy in HER2-positive, PIK3CA-mutant BT474 breast, PTEN-deficient PC3 human prostate cancer, and PTEN-deficient MES-SA uterine tumor xenografts was shown. We show for the first time that induction of AKT phosphorylation at serine 473 by AT13148, as reported for other ATP-competitive inhibitors of AKT, is not a therapeutically relevant reactivation step. Gene expression studies showed that AT13148 has a predominant effect on apoptosis genes, whereas the selective AKT inhibitor CCT128930 modulates cell-cycle genes. Induction of upstream regulators including IRS2 and PIK3IP1 as a result of compensatory feedback loops was observed.

Conclusions: The clinical candidate AT13148 is a novel oral multi-AGC kinase inhibitor with potent pharmacodynamic and antitumor activity, which shows a distinct mechanism of action from other AKT inhibitors. AT13148 will now be assessed in a first-in-human phase I trial.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Antineoplastic Agents / administration & dosage*
  • Apoptosis / drug effects
  • Apoptosis / genetics
  • Cell Line, Tumor
  • Gene Expression Regulation, Neoplastic / drug effects
  • Humans
  • Neoplasms* / drug therapy
  • Neoplasms* / metabolism
  • Phosphatidylinositol 3-Kinase / metabolism*
  • Phosphoinositide-3 Kinase Inhibitors
  • Phosphorylation / drug effects
  • Protein Kinase Inhibitors / administration & dosage*
  • Pyrimidines / administration & dosage
  • Pyrroles / administration & dosage
  • Signal Transduction / drug effects
  • Xenograft Model Antitumor Assays

Substances

  • 4-(4-chlorobenzyl)-1-(7H-pyrrolo(2,3-d)pyrimidin-4-yl)piperidin-4-amine
  • Antineoplastic Agents
  • Phosphoinositide-3 Kinase Inhibitors
  • Protein Kinase Inhibitors
  • Pyrimidines
  • Pyrroles
  • Phosphatidylinositol 3-Kinase