Analysis of substrate specificity and cyclin Y binding of PCTAIRE-1 kinase

Cell Signal. 2012 Nov;24(11):2085-94. doi: 10.1016/j.cellsig.2012.06.018. Epub 2012 Jul 11.

Abstract

PCTAIRE-1 (cyclin-dependent kinase [CDK] 16) is a highly conserved serine/threonine kinase that belongs to the CDK family of protein kinases. Little is known regarding PCTAIRE-1 regulation and function and no robust assay exists to assess PCTAIRE-1 activity mainly due to a lack of information regarding its preferred consensus motif and the lack of bona fide substrates. We used positional scanning peptide library technology and identified the substrate-specificity requirements of PCTAIRE-1 and subsequently elaborated a peptide substrate termed PCTAIRE-tide. Recombinant PCTAIRE-1 displayed vastly improved enzyme kinetics on PCTAIRE-tide compared to a widely used generic CDK substrate peptide. PCTAIRE-tide also greatly improved detection of endogenous PCTAIRE-1 activity. Similar to other CDKs, PCTAIRE-1 requires a proline residue immediately C-terminal to the phosphoacceptor site (+1) for optimal activity. PCTAIRE-1 has a unique preference for a basic residue at +4, but not at +3 position (a key characteristic for CDKs). We also demonstrate that PCTAIRE-1 binds to a novel cyclin family member, cyclin Y, which increased PCTAIRE-1 activity towards PCTAIRE-tide >100-fold. We hypothesised that cyclin Y binds and activates PCTAIRE-1 in a way similar to which cyclin A2 binds and activates CDK2. Point mutants of cyclin Y predicted to disrupt PCTAIRE-1-cyclin Y binding severely prevented complex formation and activation of PCTAIRE-1. We have identified PCTAIRE-tide as a powerful tool to study the regulation of PCTAIRE-1. Our understanding of the molecular interaction between PCTAIRE-1 and cyclin Y further facilitates future investigation of the functions of PCTAIRE-1 kinase.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Amino Acid Sequence
  • Binding Sites
  • Cyclin-Dependent Kinases / chemistry
  • Cyclin-Dependent Kinases / genetics
  • Cyclin-Dependent Kinases / metabolism*
  • Cyclins / genetics
  • Cyclins / metabolism*
  • HEK293 Cells
  • Humans
  • Kinetics
  • Mutation
  • Peptide Library
  • Protein Binding
  • Protein Structure, Tertiary
  • Recombinant Proteins / chemistry
  • Recombinant Proteins / genetics
  • Recombinant Proteins / metabolism
  • Substrate Specificity
  • Transfection

Substances

  • CCNY protein, human
  • Cyclins
  • Peptide Library
  • Recombinant Proteins
  • Cyclin-Dependent Kinases
  • PCTAIRE-1 protein kinase