Current trends in pedicle screw stimulation techniques: lumbosacral, thoracic, and cervical levels

Neurodiagn J. 2012 Jun;52(2):100-75.

Abstract

Unequivocally, pedicle screw instrumentation has evolved as a primary construct for the treatment of both common and complex spinal disorders. However an inevitable and potentially major complication associated with this type of surgery is misplacement of a pedicle screw(s) which may result in neural and vascular complications, as well as impair the biomechanical stability of the spinal instrumentation resulting in loss of fixation. In light of these potential surgical complications, critical reviews of outcome data for treatment of chronic, low-back pain using pedicle screw instrumentation concluded that "pedicle screw fixation improves radiographically demonstrated fusion rates;" however the expense and complication rates for such constructs are considerable in light of the clinical benefit (Resnick et al. 2005a). Currently, neuromonitoring using free-run and evoked (triggered) electromyography (EMG) is widely used and advocated for safer and more accurate placement of pedicle screws during open instrumentation procedures, and more recently, guiding percutaneous placement (minimally invasive) where the pedicle cannot be easily inspected visually. The latter technique, evoked or triggered EMG when applied to pedicle screw instrumentation surgeries, has been referred to as the pedicle screw stimulation technique. As concluded in the Position Statement by the American Society of Neurophysiological Monitoring (ASNM), multimodality neuromonitoring using free-run EMG and the pedicle screw stimulation technique was considered a practice option and not yet a standard of care (Leppanen 2005). Subsequently, the American Association of Neurological Surgeons/Congress of Neurological Surgeons (AANS/CNS) Joint Section on Disorders of the Spine and Peripheral Nerves published their "Guidelines for the Performance of Fusion Procedures for Degenerative Disease of the Lumbar Spine" (Heary 2005, Resnick et al. 2005a, Resnick et al. 2005b). It was concluded that the "primary justification" of intraoperative neuromonitoring"... is the perception that the safety and efficacy of pedicle screw fixation are enhanced..." (Resnick et al. 2005b). However in summarizing a massive (over 1000 papers taken from the National Library of Medicine), contemporary, literature review spanning nearly a decade (1996 to 2003), this invited panel (Resnick et al. 2005b) recognized that the evidence-based documents contributing to the parts related to pedicle screw fixation and neuromonitoring were "... full of potential sources of error ..." and lacked appropriate, randomized, prospective studies for formulating rigid standards and guidelines. Nevertheless, current trends support the routine use and clinical utility of these neuromonitoring techniques. In particular free-run and triggered EMG have been well recognized in numerous publications for improving both the accuracy and safety of pedicle screw implantation. Currently, treatment with pedicle screw instrumentation routinely involves all levels of the spine - lumbosacral, thoracic, and cervical. Significant historical events, various neuromonitoring modalities, intraoperative alarm criteria, clinical efficacy, current trends, and caveats related to pedicle screw stimulation along the entire vertebral column will be reviewed.

Publication types

  • Review

MeSH terms

  • Bone Screws / adverse effects*
  • Bone Screws / trends
  • Cervical Vertebrae
  • Electric Stimulation / methods*
  • Electrodiagnosis / methods*
  • Electrodiagnosis / trends
  • Forecasting
  • Humans
  • Lumbosacral Region
  • Spinal Cord Injuries / diagnosis
  • Spinal Cord Injuries / etiology*
  • Spinal Cord Injuries / prevention & control*
  • Spinal Fusion / adverse effects*
  • Spinal Fusion / instrumentation*
  • Spinal Fusion / trends
  • Thoracic Vertebrae