Microanatomy of the paired-fin pads of ostariophysan fishes (Teleostei: Ostariophysi)

J Morphol. 2012 Oct;273(10):1127-49. doi: 10.1002/jmor.20049. Epub 2012 Jul 19.

Abstract

Members of the teleost superorder Ostariophysi dominate freshwater habitats on all continents except Antarctica and Australia. Obligate benthic and rheophilic taxa from four different orders of the Ostariophysi (Gonorynchiformes, Cypriniformes, Characiformes, and Siluriformes) frequently exhibit thickened pads of skin along the ventral surface of the anteriormost ray or rays of horizontally orientated paired (pectoral and pelvic) fins. Such paired-fin pads, though convergent, are externally homogenous across ostariophysan groups (particularly nonsiluriform taxa) and have been considered previously to be the result of epidermal modification. Histological examination of the pectoral and/or pelvic fins of 44 species of ostariophysans (including members of the Gonorynchiforms, Cypriniformes, Characiformes, and Siluriformes) revealed a tremendous and previously unrecognized diversity in the cellular arrangement of the skin layers (epidermis and subdermis) contributing to the paired-fin pads. Three types of paired-fin pads (Types 1-3) are identified in nonsiluriform ostariophysan fishes, based on differences in the cellular arrangement of the epidermis and subdermis. The paired-fin pads of siluriforms may or may not exhibit a deep series of ridges and grooves across the surface. Two distinct patterns of unculus producing cells are identified in the epidermis of the paired-fin pads of siluriforms, one of which is characterized by distinct bands of keratinization throughout the epidermis and is described in Amphilius platychir (Amphiliidae) for the first time. General histological comparisons between the paired fins of benthic and rheophilic ostariophysan and nonostariophysan percomorph fishes are provided, and the possible function(s) of the paired-fin pads of ostariophysan fish are discussed.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Animal Fins / anatomy & histology*
  • Animal Fins / cytology
  • Animals
  • Cypriniformes / anatomy & histology*
  • Ecosystem
  • Epidermis / anatomy & histology
  • Extremities / anatomy & histology
  • Fishes / anatomy & histology