Theoretical design study on photophysical property on oligomers based on spirobifluorene and carbazole-triphenylamine for PLED applications

J Mol Model. 2013 Jan;19(1):139-49. doi: 10.1007/s00894-012-1529-6. Epub 2012 Jul 25.

Abstract

The photophysical properties of five blue light-emitting polymers based on spirobifluorene applied in polymer light-emitting diodes (PLED) materials have been studied by quantum chemistry. In order to understand the intrinsic reasons for the different performances displayed by the polymers, we carried out density functional theory (DFT) and Marcus theory investigations on their oligomers in terms of structure and properties stability, absorption and emission properties, and carrier injection and transport properties. Especially, some important parameters which had not been reported to our knowledge were given in this contribution, such as the ionization potentials (IPs), electron affinities (EAs), reorganization energies (λ), ke/kh (the ratio between the electron transfer rate (ke) and hole transfer rate (kh)), and the radiative lifetimes (τ). The main results indicate that the co-oligomers of PCC-1, PCC-2, and PCC-3 with push-pull interactions produced by the existing D-A segments have better carrier injection and transport properties than the oligomers of PSF and PCF. Especially PCC-2 co-oligomer, its large radiation lifetime (7.46 ns) and well balanced and adequate carrier transport guarantee its champion performance for PLED. The calculated results coincide with the experimental ones. Besides, PNF structurally similar to PCC-2 has similar photoelectric properties to PCC-2 in theory, and the fluorescence emission of PNF co-oligomer is superior to PCC-2 co-oligomer. Therefore, we predict that PNF is a promising candidate for PLED.

Publication types

  • Research Support, Non-U.S. Gov't