Gating movement of acetylcholine receptor caught by plunge-freezing

J Mol Biol. 2012 Oct 5;422(5):617-634. doi: 10.1016/j.jmb.2012.07.010. Epub 2012 Jul 24.

Abstract

The nicotinic acetylcholine (ACh) receptor converts transiently to an open-channel form when activated by ACh released into the synaptic cleft. We describe here the conformational change underlying this event, determined by electron microscopy of ACh-sprayed and freeze-trapped postsynaptic membranes. ACh binding to the α subunits triggers a concerted rearrangement in the ligand-binding domain, involving an ~1-Å outward displacement of the extracellular portion of the β subunit where it interacts with the juxtaposed ends of α-helices shaping the narrow membrane-spanning pore. The β-subunit helices tilt outward to accommodate this displacement, destabilising the arrangement of pore-lining helices, which in the closed channel bend inward symmetrically to form a central hydrophobic gate. Straightening and tangential motion of the pore-lining helices effect channel opening by widening the pore asymmetrically and increasing its polarity in the region of the gate. The pore-lining helices of the α(γ) and δ subunits, by flexing between alternative bent and straight conformations, undergo the greatest movements. This coupled allosteric transition shifts the structure from a tense (closed) state toward a more relaxed (open) state.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Acetylcholine / metabolism*
  • Allosteric Regulation
  • Animals
  • Cryoelectron Microscopy / methods*
  • Ion Channel Gating*
  • Models, Biological
  • Models, Molecular
  • Protein Conformation
  • Receptors, Cholinergic / chemistry*
  • Receptors, Cholinergic / metabolism*
  • Receptors, Cholinergic / ultrastructure
  • Torpedo

Substances

  • Receptors, Cholinergic
  • Acetylcholine

Associated data

  • PDB/4AQ5
  • PDB/4AQ9