Wetlands shrinkage, fragmentation and their links to agriculture in the Muleng-Xingkai Plain, China

J Environ Manage. 2012 Nov 30:111:120-32. doi: 10.1016/j.jenvman.2012.06.038. Epub 2012 Jul 25.

Abstract

In the past five decades, the wetlands in the Muleng-Xingkai Plain, Northeast China, have experienced rapid shrinkage and fragmentation. In this study, wetlands cover change and agricultural cultivation were investigated through a time series of thematic maps from 1954, and Landsat satellite images representing the last five decades (1976, 1986, 1995, 2000, and 2005). Wetlands shrinkage and fragmentation were studied based on landscape metrics and the land use changes transition matrix. Furthermore, the driving forces were explored according to socioeconomic development and major natural environmental factors. The results indicate a significant decrease in the wetlands area in the past five decades, with an average annual decrease rate of 9004 ha/yr. Of the 625,268 ha of native wetlands in 1954, approximately 64% has been converted to other land use types by 2005, of which conversion to cropland accounts for the largest share (83%). The number of patches decreased from 1272 (1954) to 197 (1986) and subsequently increased to 326 (2005). The mean patch size changed from 480 ha (1954) to 1521 ha (1976), and then steadily decreased to 574 ha (2005). The largest patch index (total core area index) indicates wetlands shrinkage with decreased values from 31.73 (177,935 ha) to 3.45 (39,421 ha) respectively. Climatic changes occurred over the study period, providing a potentially favorable environment for agricultural development. At the same time population, groundwater harvesting, and fertilizer application increased significantly, resulting in wetlands degradation. According to the results, the shrinkage and fragmentation of wetlands could be explained by socioeconomic development and secondarily aided by changing climatic conditions.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Agriculture*
  • China
  • Climate Change
  • Conservation of Natural Resources*
  • Ecosystem
  • Environmental Monitoring*
  • Geographic Mapping
  • Remote Sensing Technology
  • Wetlands*