CO2-induced degradation of amine-containing adsorbents: reaction products and pathways

J Am Chem Soc. 2012 Aug 22;134(33):13834-42. doi: 10.1021/ja304888a. Epub 2012 Aug 9.

Abstract

A comprehensive study was conducted to investigate the stability of a wide variety of mesoporous silica-supported amine-containing adsorbents in the presence of carbon dioxide under dry conditions. CO(2)-induced degradation of grafted primary and secondary monoamines (pMono, sMono), diamines with one primary and one secondary amines (Diamine) and triamine with one primary and two secondary amines (TRI) as well as different impregnated polyamines such as branched and linear polyethylenimine (BPEI and LPEI) and polyallylamine (PALL) was investigated using extensive CO(2) adsorption-desorption cycling as well as diffuse reflectance infrared Fourier transform (DRIFT) and (13)C CP MAS NMR measurements. Except for sMono, all other supported amines underwent significant deactivation in the presence of dry CO(2) under mild conditions. In all cases, the decrease in CO(2) uptake was associated with the formation of urea linkages at the expense of amine groups. The urea-containing species were identified, and the deactivation pathways were delineated.