A 64-channel 3T array coil for accelerated brain MRI

Magn Reson Med. 2013 Jul;70(1):248-58. doi: 10.1002/mrm.24427. Epub 2012 Jul 31.


A 64-channel brain array coil was developed and compared to a 32-channel array constructed with the same coil former geometry to precisely isolate the benefit of the 2-fold increase in array coil elements. The constructed coils were developed for a standard clinical 3T MRI scanner and used a contoured head-shaped curved former around the occipital pole and tapered in at the neck to both improve sensitivity and patient comfort. Additionally, the design is a compact, split-former design intended for robust daily use. Signal-to-noise ratio and noise amplification (G-factor) for parallel imaging were quantitatively evaluated in human imaging and compared to a size and shape-matched 32-channel array coil. For unaccelerated imaging, the 64-channel array provided similar signal-to-noise ratio in the brain center to the 32-channel array and 1.3-fold more signal-to-noise ratio in the brain cortex. Reduced noise amplification during highly parallel imaging of the 64-channel array provided the ability to accelerate at approximately one unit higher at a given noise amplification compared to the sized-matched 32-channel array. For example, with a 4-fold acceleration rate, the central brain and cortical signal-to-noise ratio of the 64-channel array was 1.2- and 1.4-fold higher, respectively, compared to the 32-channel array. The characteristics of the coil are demonstrated in accelerated brain imaging.

Publication types

  • Research Support, N.I.H., Extramural

MeSH terms

  • Brain / anatomy & histology*
  • Equipment Design
  • Equipment Failure Analysis
  • Humans
  • Image Enhancement / instrumentation*
  • Image Interpretation, Computer-Assisted / instrumentation*
  • Magnetic Resonance Imaging / instrumentation*
  • Magnetics / instrumentation*
  • Reproducibility of Results
  • Sensitivity and Specificity
  • Transducers*