Innate immune cells, such as intestinal epithelial cells, dendritic cells (DCs), macrophages, granulocytes, and innate lymphoid cells provide a first line of defence to enteric pathogens. To study the role of CX(3)CR1(+) DCs and macrophages in host defence, we infected CX(3)CR1-GFP animals with Citrobacter rodentium. When transgenic CX(3)CR1-GFP animals are infected with the natural mouse pathogen C. rodentium, CX(3)CR1(-/-) animals showed a delayed clearance of C. rodentium as compared with (age- and sex-matched) wild-type B6 animals. The delayed clearance of C. rodentium is associated with reduced interleukin (IL)-22 expression. In C. rodentium-infected CX(3)CR1-GFP animals, IL-22 producing lymphoid-tissue inducer cells (LTi cells) were selectively reduced in the absence of CX(3)CR1. The reduced IL-22 expression correlates with decreased expression of the antimicrobial peptides RegIIIβ and RegIIIγ. The depletion of CX(3)CR1(+) cells by diphtheria toxin injection in CX(3)CR1-GFP × CD11c.DOG animals confirmed the role of CX(3)CR1(+) phagocytes in establishing IL-22 production, supporting the clearance of a C. rodentium infection.