Water sorption in ionic liquids: kinetics, mechanisms and hydrophilicity

Phys Chem Chem Phys. 2012 Sep 21;14(35):12252-62. doi: 10.1039/c2cp41798g. Epub 2012 Aug 7.

Abstract

Most of the ionic liquids (ILs) are hygroscopic in air. The effects of structural factors of ILs (cation, anion, alkyl chain length at cation, and C2 methylation at cation) and external factors (temperature, relative humidity, and impurity) on the kinetics of water sorption by 18 ILs were investigated. A modified two-step sorption mechanism was proposed to correlate the water sorption data in the ILs. Three type of parameters (sorption capacity, sorption rate and degree of difficulty to reach sorption equilibrium) based on the modified two-step mechanism were derived to comprehensively characterize the water sorption processes. These parameters have similar tendencies, providing an efficient way to evaluate them by one parameter that can be easily obtained. The hydrophilicity of the ILs was classified to four levels (super-high, high, medium, low) according to the water sorption capacity. The results show that cation of the ILs also plays an important role in water sorption, and the impurities affect the water sorption enormously. Acetate and halogen-based ILs have the highest hydrophilicity when combined with the imidazolium or pyridinium cation.