Transforming growth factor beta 1 acts as an autocrine-negative growth regulator in colon enterocytic differentiation but not in goblet cell maturation

Cell Growth Differ. 1990 Dec;1(12):617-26.

Abstract

Previous studies from this laboratory (Schroy, P., Rifkin, J., Coffey, R.J., Winawer, S., and Friedman, E. (Cancer Res., 50: 261-265, 1990; Schroy, P.C., Winawer, S., and Friedman, E. Cancer Lett., 48: 53-58, 1989) found that a 7-day treatment of the human colon carcinoma cell line HT29 with the differentiation agent hexamethylene bisacetamide (HMBA) induces both a 4-5-fold increase in transforming growth factor beta 1 (TGF beta 1) mRNA levels and reduced tumorigenicity in vivo. A series of 15 cloned lines with different commitments to differentiation has been isolated from 20-day HMBA-treated HT29 cells, maintained without HMBA, and utilized to study the role of TGF beta 1 in colon carcinoma differentiation. Two such lines, HD6 and HD8, differentiate to 97 and 76% mucus-secreting goblet cells, respectively, in columnar monolayers in postconfluent culture. Both HD6 and HD8 cells exhibit low TGF beta 1 mRNA levels, little different from the undifferentiated HT29 parental line, and exhibit no growth modulation in response to exogenous TGF beta 1. In contrast, two other lines, HD3 and HD4, differentiate to fluid-transporting enterocytic cells with functional brush borders and exhibit autocrine-negative growth response to TGF beta 1. Both lines express TGF beta 1 mRNA at levels 11-12-fold higher than the parental line and respond to exogenous TGF beta 1 by growth inhibition. HD3 cells secrete biologically active TGF beta 1 into conditioned media, which inhibited growth of a TGF beta 1-sensitive mink cell line. This inhibition was blocked by antisera to TGF beta 1, proving the specificity of the inhibition. A range of concentrations of this TGF beta 1 antiserum stimulated HD3 cell growth in a dose-dependent manner, further documenting the autocrine-negative response of the cells to TGF beta 1. Another cell line, HI1, was blocked in enterocytic differentiation. HI1 cells synthesized as much TGF beta 1 mRNA as HD3 and HD4 cells, yet they responded to exogenous TGF beta 1 with less growth inhibition, suggesting some impairment in their response to TGF beta 1. A third class of response to TGF beta 1 was exhibited by the HP1 cell line, which was resistant to HMBA-induced differentiation, remaining undifferentiated with a multilayered growth pattern. HP1 cells synthesized TGF beta 1 mRNA at levels over 20 times the parental level but were stimulated to divide by TGF beta 1, exhibiting autocrine-positive response to this growth factor.(ABSTRACT TRUNCATED AT 400 WORDS)

Publication types

  • Comparative Study
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Acetamides / pharmacology
  • Cell Differentiation / drug effects
  • Clone Cells
  • Colon / cytology*
  • Colon / metabolism
  • Colonic Neoplasms / metabolism
  • Colonic Neoplasms / pathology*
  • Growth Inhibitors*
  • Humans
  • Mucins / biosynthesis
  • RNA, Messenger / metabolism
  • Time Factors
  • Transforming Growth Factor beta / biosynthesis
  • Transforming Growth Factor beta / genetics
  • Transforming Growth Factor beta / physiology*

Substances

  • Acetamides
  • Growth Inhibitors
  • Mucins
  • RNA, Messenger
  • Transforming Growth Factor beta
  • hexamethylene bisacetamide