Zinc-mediated allosteric inhibition of caspase-6

J Biol Chem. 2012 Oct 19;287(43):36000-11. doi: 10.1074/jbc.M112.397752. Epub 2012 Aug 13.

Abstract

Zinc and caspase-6 have independently been implicated in several neurodegenerative disorders. Depletion of zinc intracellularly leads to apoptosis by an unknown mechanism. Zinc inhibits cysteine proteases, including the apoptotic caspases, leading to the hypothesis that zinc-mediated inhibition of caspase-6 might contribute to its regulation in a neurodegenerative context. Using inductively coupled plasma optical emission spectroscopy, we observed that caspase-6 binds one zinc per monomer, under the same conditions where the zinc leads to complete loss of enzymatic activity. To understand the molecular details of zinc binding and inhibition, we performed an anomalous diffraction experiment above the zinc edge. The anomalous difference maps showed strong 5σ peaks, indicating the presence of one zinc/monomer bound at an exosite distal from the active site. Zinc was not observed bound to the active site. The zinc in the exosite was liganded by Lys-36, Glu-244, and His-287 with a water molecule serving as the fourth ligand, forming a distorted tetrahedral ligation sphere. This exosite appears to be unique to caspase-6, as the residues involved in zinc binding were not conserved across the caspase family. Our data suggest that binding of zinc at the exosite is the primary route of inhibition, potentially locking caspase-6 into the inactive helical conformation.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Allosteric Regulation / physiology
  • Binding Sites
  • Caspase 6 / chemistry*
  • Caspase 6 / genetics
  • Caspase 6 / metabolism
  • Humans
  • Peptide Mapping
  • Protein Binding
  • Protein Structure, Secondary
  • Zinc / chemistry*
  • Zinc / metabolism

Substances

  • CASP6 protein, human
  • Caspase 6
  • Zinc

Associated data

  • PDB/4FXO