Quantifying ecosystem service trade-offs: the case of an urban floodplain in Vienna, Austria

J Environ Manage. 2012 Nov 30:111:159-72. doi: 10.1016/j.jenvman.2012.06.008. Epub 2012 Aug 11.

Abstract

Wetland ecosystems provide multiple functions and services for the well-being of humans. In urban environments, planning and decision making about wetland restoration inevitably involves conflicting objectives, trade-offs, uncertainties and conflicting value judgments. This study applied trade-off and multi criteria decision analysis to analyze and quantify the explicit trade-offs between the stakeholder's objectives related to management options for the restoration of an urban floodplain, the Lobau, in Vienna, Austria. The Lobau has been disconnected from the main channel of the Danube River through flood protection schemes 130 years ago that have reduced the hydraulic exchange processes. Urban expansion has also changed the adjacent areas and led to increased numbers of visitors, which hampers the maximum potential for ecosystem development and exerts additional pressure on the sensitive habitats in the national park area. The study showed that increased hydraulic connectivity would benefit several stakeholders that preferred the ecological development of the floodplain habitats. However, multiple uses including fishery, agriculture and recreation, exploring the maximum potential in line with national park regulations, were also possible under the increased hydraulic connectivity options. The largest trade-offs were quantified to be at 0.50 score between the ecological condition of the aquatic habitats and the drinking water production and 0.49 score between the ecological condition of the terrestrial habitats and the drinking water production. At this point, the drinking water production was traded-off with 0.40 score, while the ecological condition of the aquatic habitats and the ecological condition of the terrestrial habitats were traded off with 0.30 and 0.23 score, respectively. The majority of the stakeholders involved preferred the management options that increased the hydraulic connectivity compared with the current situation which was not preferred by any stakeholders. These findings highlight the need for targeted restoration measures. By that, it is recommended that additional measures to ensure reliable drinking water production should be developed, if the higher connectivity options would be implemented. In the next step it is recommended to include cost and flood risk criteria in the decision matrix for more specific developed measures. The research showed that pair-wise trade-off figures provided a useful means to elaborate and quantify the real trade-offs. Finally, the research also showed that the use of multi criteria decision analyses should be based on a participatory approach, in which the process of arriving at the final ranking should be equal or more important than the outcome of the ranking itself.

Publication types

  • Evaluation Study
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Agriculture
  • Algorithms
  • Austria
  • Cities
  • Conservation of Natural Resources / methods*
  • Decision Support Techniques*
  • Drinking Water
  • Ecosystem
  • Environmental Policy*
  • Fisheries
  • Recreation
  • Rivers*
  • Wetlands*

Substances

  • Drinking Water