Genetic background affects epistatic interactions between two beneficial mutations
- PMID: 22896270
- PMCID: PMC3565476
- DOI: 10.1098/rsbl.2012.0328
Genetic background affects epistatic interactions between two beneficial mutations
Abstract
The phenotypic effect of mutations can depend on their genetic background, a phenomenon known as epistasis. Many experimental studies have found that epistasis is pervasive, and some indicate that it may follow a general pattern dependent on the fitness effect of the interacting mutations. These studies have, however, typically examined the effect of interactions between a small number of focal mutations in a single genetic background. Here, we extend this approach by considering how the interaction between two beneficial mutations that were isolated from a population of laboratory evolved Escherichia coli changes when they are added to divergent natural isolate strains of E. coli. We find that interactions between the focal mutations and the different genetic backgrounds are common. Moreover, the pair-wise interaction between the focal mutations also depended on their genetic background, being more negative in backgrounds with higher absolute fitness. Together, our results indicate the presence of interactions between focal mutations, but also caution that these interactions depend quantitatively on the wider genetic background.
Figures
Similar articles
-
The environment affects epistatic interactions to alter the topology of an empirical fitness landscape.PLoS Genet. 2013 Apr;9(4):e1003426. doi: 10.1371/journal.pgen.1003426. Epub 2013 Apr 4. PLoS Genet. 2013. PMID: 23593024 Free PMC article.
-
Benefit of transferred mutations is better predicted by the fitness of recipients than by their ecological or genetic relatedness.Proc Natl Acad Sci U S A. 2016 May 3;113(18):5047-52. doi: 10.1073/pnas.1524988113. Epub 2016 Apr 18. Proc Natl Acad Sci U S A. 2016. PMID: 27091964 Free PMC article.
-
Negative epistasis between beneficial mutations in an evolving bacterial population.Science. 2011 Jun 3;332(6034):1193-6. doi: 10.1126/science.1203801. Science. 2011. PMID: 21636772
-
Should evolutionary geneticists worry about higher-order epistasis?Curr Opin Genet Dev. 2013 Dec;23(6):700-7. doi: 10.1016/j.gde.2013.10.007. Epub 2013 Nov 27. Curr Opin Genet Dev. 2013. PMID: 24290990 Free PMC article. Review.
-
Perspective: Sign epistasis and genetic constraint on evolutionary trajectories.Evolution. 2005 Jun;59(6):1165-74. Evolution. 2005. PMID: 16050094 Review.
Cited by
-
Epistasis can accelerate adaptive diversification in haploid asexual populations.Proc Biol Sci. 2015 Mar 7;282(1802):20142648. doi: 10.1098/rspb.2014.2648. Proc Biol Sci. 2015. PMID: 25631997 Free PMC article.
-
Survival of the Curviest: Noise-Driven Selection for Synergistic Epistasis.PLoS Genet. 2016 Apr 28;12(4):e1006003. doi: 10.1371/journal.pgen.1006003. eCollection 2016 Apr. PLoS Genet. 2016. PMID: 27123867 Free PMC article.
-
Stress-response balance drives the evolution of a network module and its host genome.Mol Syst Biol. 2015 Aug 31;11(8):827. doi: 10.15252/msb.20156185. Mol Syst Biol. 2015. PMID: 26324468 Free PMC article.
-
Highly parallelized laboratory evolution of wine yeasts for enhanced metabolic phenotypes.Mol Syst Biol. 2024 Oct;20(10):1109-1133. doi: 10.1038/s44320-024-00059-0. Epub 2024 Aug 22. Mol Syst Biol. 2024. PMID: 39174863 Free PMC article.
-
The conditional nature of genetic interactions: the consequences of wild-type backgrounds on mutational interactions in a genome-wide modifier screen.PLoS Genet. 2013;9(8):e1003661. doi: 10.1371/journal.pgen.1003661. Epub 2013 Aug 1. PLoS Genet. 2013. PMID: 23935530 Free PMC article.
References
-
- Brideau N. J., Flores H. A., Wang J., Maheshwari S., Wang X., Barbash D. A. 2006. Two Dobzhansky–Muller genes interact to cause hybrid lethality in Drosophila. Science 314, 1292–129510.1126/science.1133953 (doi:10.1126/science.1133953) - DOI - DOI - PubMed
-
- Dettman J. R., Sirjusingh C., Kohn L. M., Anderson J. B. 2007. Incipient speciation by divergent adaptation and antagonistic epistasis in yeast. Nature 447, 585–58810.1038/nature05856 (doi:10.1038/nature05856) - DOI - DOI - PubMed
-
- Anderson J. B., et al. 2010. Determinants of divergent adaptation and Dobzhansky–Muller interaction in experimental yeast populations. Curr. Biol. 20, 1383–138810.1016/j.cub.2010.06.022 (doi:10.1016/j.cub.2010.06.022) - DOI - DOI - PMC - PubMed
-
- Orr H. A., Turelli M. 2001. The evolution of postzygotic isolation: accumulating Dobzhansky–Muller incompatibilities. Evolution 55, 1085–109410.1111/j.0014-3820.2001.tb00628.x (doi:10.1111/j.0014-3820.2001.tb00628.x) - DOI - DOI - PubMed
-
- Azevedo R. B. R., Lohaus R., Srinivasan S., Dang K. K., Burch C. L. 2006. Sexual reproduction selects for robustness and negative epistasis in artificial gene networks. Nature 440, 87–9010.1038/nature04488 (doi:10.1038/nature04488) - DOI - DOI - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
