Reduced metabolic insulin sensitivity following sub-acute exposures to low levels of ambient fine particulate matter air pollution

Sci Total Environ. 2013 Mar 15;448:66-71. doi: 10.1016/j.scitotenv.2012.07.034. Epub 2012 Aug 15.


Epidemiological studies suggest that fine particulate matter (PM2.5) may increase the risk for developing diabetes mellitus (DM). To evaluate possible mechanisms explaining these associations, we investigated if sub-acute ambient-level exposures can impair insulin sensitivity. Twenty-five healthy adults living in rural Michigan were transported to an urban location for 5 consecutive days (exposure-block) of daily 4- to 5-hour-long ambient air pollution exposures. Health outcomes, including the homeostasis model assessment of insulin resistance (HOMA-IR) the primary outcome of insulin sensitivity, were measured at 3 time points in relation to exposure-blocks: 7days prior to start; on the last exposure-day; and 7days after completion. PM2.5 was monitored at the urban exposure site and at community monitors near subjects' residences. We calculated 3 "sub-acute" exposure periods (approximately 5-days-long) starting retrospective from the time of health outcome measurements (PM2.5 ranges: 9.7±3.9 to 11.2±3.9μg·m(-3)). A 10μg·m(-3) increase in sub-acute PM2.5 exposures was associated with increased HOMA-IR (+0.7, 95% confidence interval (CI) 0.1 to 1.3; p=0.023) and reduced heart rate variability (standard deviation of normal-to-normal intervals [-13.1ms, 95%CI -25.3 to -0.9; p=0.035]). No alterations in other outcomes (inflammatory markers, vascular function) occurred in relation to PM2.5 exposures. Our findings suggest that ambient PM2.5, even at low levels, may reduce metabolic insulin sensitivity supporting the plausibility that air pollution could potentiate the development of DM.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Adolescent
  • Adult
  • Air Pollution
  • Blood Glucose
  • Diabetes Mellitus / epidemiology*
  • Environmental Exposure*
  • Female
  • Humans
  • Insulin / blood
  • Insulin Resistance*
  • Male
  • Michigan
  • Middle Aged
  • Particulate Matter / toxicity*
  • Risk Factors


  • Blood Glucose
  • Insulin
  • Particulate Matter