Concussive injury (or mild traumatic brain injury; mTBI) can exhibit features of focal or diffuse injury patterns. We compared and contrasted the cellular and molecular responses after mild controlled cortical impact (mCCI; a focal injury) or fluid percussion injury (FPI; a diffuse injury) in rats. The rationale for this comparative analysis was to investigate the brain's response to mild diffuse versus mild focal injury to identify common molecular changes triggered by these injury modalities and to determine the functional pathways altered after injury that may provide novel targets for therapeutic intervention. Microarrays containing probes against 21,792 unique messenger RNAs (mRNAs) were used to investigate the changes in cortical mRNA expression levels at 3 and 24 h postinjury. Of the 354 mRNAs with significantly altered expression levels after mCCI, over 89% (316 mRNAs) were also contained within the mild FPI (mFPI) data set. However, mFPI initiated a more widespread molecular response, with over 2300 mRNAs differentially expressed. Bioinformatic analysis of annotated gene ontology molecular function and biological pathway terms showed a significant overrepresentation of genes belonging to inflammation, stress, and signaling categories in both data sets. We therefore examined changes in the protein levels of a panel of 23 cytokines and chemokines in cortical extracts using a Luminex-based bead immunoassay and detected significant increases in macrophage inflammatory protein (MIP)-1α (CCL3), GRO-KC (CXCL1), interleukin (IL)-1α, IL-1β, and IL-6. Immunohistochemical localization of MIP-1α and IL-1β showed marked increases at 3 h postinjury in the cortical vasculature and microglia, respectively, that were largely resolved by 24 h postinjury. Our findings demonstrate that both focal and diffuse mTBI trigger many shared pathobiological processes (e.g., inflammatory responses) that could be targeted for mechanism-based therapeutic interventions.