The genetic basis of pollinator adaptation in a sexually deceptive orchid

PLoS Genet. 2012;8(8):e1002889. doi: 10.1371/journal.pgen.1002889. Epub 2012 Aug 16.

Abstract

In plants, pollinator adaptation is considered to be a major driving force for floral diversification and speciation. However, the genetic basis of pollinator adaptation is poorly understood. The orchid genus Ophrys mimics its pollinators' mating signals and is pollinated by male insects during mating attempts. In many species of this genus, chemical mimicry of the pollinators' pheromones, especially of alkenes with different double-bond positions, plays a key role for specific pollinator attraction. Thus, different alkenes produced in different species are probably a consequence of pollinator adaptation. In this study, we identify genes that are likely involved in alkene biosynthesis, encoding stearoyl-acyl carrier protein (ACP) desaturases (SAD), in three closely related Ophrys species, O. garganica, O. sphegodes, and O. exaltata. Combining floral odor and gene expression analyses, two SAD homologs (SAD1/2) showed significant association with the production of (Z)-9- and (Z)-12-alkenes that were abundant in O. garganica and O. sphegodes, supporting previous biochemical data. In contrast, two other newly identified homologs (SAD5/6) were significantly associated with (Z)-7-alkenes that were highly abundant only in O. exaltata. Both molecular evolutionary analyses and pollinator preference tests suggest that the alkenes associated with SAD1/2 and SAD5/6 are under pollinator-mediated divergent selection among species. The expression patterns of these genes in F₁ hybrids indicate that species-specific expression differences in SAD1/2 are likely due to cis-regulation, while changes in SAD5/6 are likely due to trans-regulation. Taken together, we report a genetic mechanism for pollinator-mediated divergent selection that drives adaptive changes in floral alkene biosynthesis involved in reproductive isolation among Ophrys species.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adaptation, Physiological*
  • Alkenes / isolation & purification
  • Animals
  • Biological Evolution
  • Flowers / classification
  • Flowers / physiology*
  • Gene Expression
  • Hybridization, Genetic
  • Insecta / physiology
  • Isoenzymes / genetics
  • Isoenzymes / metabolism
  • Male
  • Mixed Function Oxygenases / genetics*
  • Mixed Function Oxygenases / metabolism
  • Molecular Mimicry
  • Odorants
  • Orchidaceae / classification
  • Orchidaceae / physiology*
  • Phylogeny
  • Plant Proteins / genetics*
  • Plant Proteins / metabolism
  • Pollination / physiology
  • Reproduction
  • Reproductive Isolation
  • Sex Attractants / biosynthesis*
  • Sex Attractants / genetics
  • Sex Attractants / isolation & purification
  • Sexual Behavior, Animal
  • Species Specificity

Substances

  • Alkenes
  • Isoenzymes
  • Plant Proteins
  • Sex Attractants
  • Mixed Function Oxygenases
  • acyl-(acyl-carrier-protein)desaturase

Grants and funding

This work has been supported by ETH Zürich (TH0206-2 to FPS), Swiss National Science Foundation (SNF 31003A_130796 to PMS), and Swiss Academy of Natural Science (SCNAT) Travel Grants (to SX). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.