Skip to main page content
Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
, 15 (4), 183-210

Antifolates in Cancer Therapy: Structure, Activity and Mechanisms of Drug Resistance

Affiliations
Review

Antifolates in Cancer Therapy: Structure, Activity and Mechanisms of Drug Resistance

Nitzan Gonen et al. Drug Resist Updat.

Abstract

In the past 65 years, antifolates targeting folate metabolism played a pivotal role in drug treatment of malignant, microbial, parasitic and chronic inflammatory diseases. Drug discovery of novel antifolates with improved properties and superior activities remains an attractive strategy both in academia and in the pharmaceutical industry. Among novel antifolates are pemetrexed which primarily targets thymidylate synthase as well as pralatrexate which blocks dihydrofolate reductase, and displays enhanced transport and cellular retention properties. The present review describes the evolution and pharmacological activity of antifolates and prospects for the development of the next generation antifolates. Pre-clinical and clinical studies identified a plethora of mechanisms of antifolate resistance that are a primary hindrance to curative cancer chemotherapy; these are frequently associated with qualitative and/or quantitative alterations in influx and/or efflux transporters of antifolates and in folate-dependent enzymes. Current advances including for example the deciphering of the dominant folate transporter proton-coupled folate transporter (PCFT/SLC46A1) facilitated the synthesis of experimental antifolates aimed at selectively targeting solid tumor cells, which reside in an acidic microenvironment where PCFT supposedly functions optimally. Moreover, drugs that are structurally and mechanistically distinct from folates were conjugated to folic acid (e.g. Vintafolide/EC145, a folic acid desacetylvinblastine conjugate) to facilitate endocytosis via the folate receptor (FR) which is markedly overexpressed in various solid tumors. In an alternative approach, novel antifolates selectively targeting the FR but not other folate transporters are being developed (e.g. BGC 945). Hence, targeting mechanisms of antifolate-resistance could facilitate the development of rationally-based novel antifolates and strategies that overcome chemoresistance.

Similar articles

See all similar articles

Cited by 68 articles

See all "Cited by" articles
Feedback