The central nervous system (CNS) is an immunologically privileged site to which access of circulating immune cells is tightly controlled by the endothelial blood-brain barrier (BBB; see Glossary) localized in CNS microvessels, and the epithelial blood-cerebrospinal fluid barrier (BCSFB) within the choroid plexus. As a result of the specialized structure of the CNS barriers, immune cell entry into the CNS parenchyma involves two differently regulated steps: migration of immune cells across the BBB or BCSFB into the cerebrospinal fluid (CSF)-drained spaces of the CNS, followed by progression across the glia limitans into the CNS parenchyma. With a focus on multiple sclerosis (MS) and its animal models, this review summarizes the distinct molecular mechanisms required for immune cell migration across the different CNS barriers.
Copyright © 2012 Elsevier Ltd. All rights reserved.