Specific expression of channelrhodopsin-2 in single neurons of Caenorhabditis elegans
- PMID: 22952643
- PMCID: PMC3431400
- DOI: 10.1371/journal.pone.0043164
Specific expression of channelrhodopsin-2 in single neurons of Caenorhabditis elegans
Erratum in
- PLoS One. 2013;8(2). doi: 10.1371/annotation/7983e1b9-09e4-4123-b1d5-aaaa0121e76a. Pokala, Navin [added];Bargmann, Cornelia I [added]
Abstract
Optogenetic approaches using light-activated proteins like Channelrhodopsin-2 (ChR2) enable investigating the function of populations of neurons in live Caenorhabditis elegans (and other) animals, as ChR2 expression can be targeted to these cells using specific promoters. Sub-populations of these neurons, or even single cells, can be further addressed by restricting the illumination to the cell of interest. However, this is technically demanding, particularly in free moving animals. Thus, it would be helpful if expression of ChR2 could be restricted to single neurons or neuron pairs, as even wide-field illumination would photostimulate only this particular cell. To this end we adopted the use of Cre or FLP recombinases and conditional ChR2 expression at the intersection of two promoter expression domains, i.e. in the cell of interest only. Success of this method depends on precise knowledge of the individual promoters' expression patterns and on relative expression levels of recombinase and ChR2. A bicistronic expression cassette with GFP helps to identify the correct expression pattern. Here we show specific expression in the AVA reverse command neurons and the aversive polymodal sensory ASH neurons. This approach shall enable to generate strains for optogenetic manipulation of each of the 302 C. elegans neurons. This may eventually allow to model the C. elegans nervous system in its entirety, based on functional data for each neuron.
Conflict of interest statement
Figures
Similar articles
-
Bimodal activation of different neuron classes with the spectrally red-shifted channelrhodopsin chimera C1V1 in Caenorhabditis elegans.PLoS One. 2012;7(10):e46827. doi: 10.1371/journal.pone.0046827. Epub 2012 Oct 3. PLoS One. 2012. PMID: 23056472 Free PMC article.
-
A gene expression fingerprint of C. elegans embryonic motor neurons.BMC Genomics. 2005 Mar 21;6:42. doi: 10.1186/1471-2164-6-42. BMC Genomics. 2005. PMID: 15780142 Free PMC article.
-
Precise optical control of gene expression in C elegans using improved genetic code expansion and Cre recombinase.Elife. 2021 Aug 5;10:e67075. doi: 10.7554/eLife.67075. Elife. 2021. PMID: 34350826 Free PMC article.
-
Optogenetic manipulation of neural activity in C. elegans: from synapse to circuits and behaviour.Biol Cell. 2013 Jun;105(6):235-50. doi: 10.1111/boc.201200069. Epub 2013 Apr 26. Biol Cell. 2013. PMID: 23458457 Review.
-
Large-scale gene expression pattern analysis, in situ, in Caenorhabditis elegans.Brief Funct Genomic Proteomic. 2008 May;7(3):175-83. doi: 10.1093/bfgp/eln013. Epub 2008 Mar 9. Brief Funct Genomic Proteomic. 2008. PMID: 18332038 Review.
Cited by
-
GABAergic motor neurons bias locomotor decision-making in C. elegans.Nat Commun. 2020 Oct 8;11(1):5076. doi: 10.1038/s41467-020-18893-9. Nat Commun. 2020. PMID: 33033264 Free PMC article.
-
Bimodal activation of different neuron classes with the spectrally red-shifted channelrhodopsin chimera C1V1 in Caenorhabditis elegans.PLoS One. 2012;7(10):e46827. doi: 10.1371/journal.pone.0046827. Epub 2012 Oct 3. PLoS One. 2012. PMID: 23056472 Free PMC article.
-
Sexually dimorphic architecture and function of a mechanosensory circuit in C. elegans.Nat Commun. 2022 Nov 11;13(1):6825. doi: 10.1038/s41467-022-34661-3. Nat Commun. 2022. PMID: 36369281 Free PMC article.
-
Neural and genetic degeneracy underlies Caenorhabditis elegans feeding behavior.J Neurophysiol. 2014 Aug 15;112(4):951-61. doi: 10.1152/jn.00150.2014. Epub 2014 May 28. J Neurophysiol. 2014. PMID: 24872529 Free PMC article.
-
Targeting cells with single vectors using multiple-feature Boolean logic.Nat Methods. 2014 Jul;11(7):763-72. doi: 10.1038/nmeth.2996. Epub 2014 Jun 8. Nat Methods. 2014. PMID: 24908100 Free PMC article.
References
-
- Nagel G, Brauner M, Liewald JF, Adeishvili N, Bamberg E, et al. (2005) Light activation of channelrhodopsin-2 in excitable cells of Caenorhabditis elegans triggers rapid behavioral responses. Curr Biol 15: 2279–2284. - PubMed
-
- Boyden ES, Zhang F, Bamberg E, Nagel G, Deisseroth K (2005) Millisecond-timescale, genetically targeted optical control of neural activity. Nat Neurosci 8: 1263–1268. - PubMed
-
- Liewald JF, Brauner M, Stephens GJ, Bouhours M, Schultheis C, et al. (2008) Optogenetic analysis of synaptic function. Nat Methods 5: 895–902. - PubMed
-
- Zhang YP, Oertner TG (2007) Optical induction of synaptic plasticity using a light-sensitive channel. Nat Methods 4: 139–141. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Research Materials
Miscellaneous
